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Project Objectives

• European Bathing Water Directive requires the implementation 
of early warning systems for bathing waters which are subject 
to short-term pollution events.

• Coastal water quality prediction models and alert systems are 
being developed which aim to provide short-term forecasts of 
bathing water.

• These forecasts are based on the (modeled) relationship 
between fecal indicator bacteria and multiple environmental 
variables.



Key Project Components

1) Model Development & Testing: UCD Civil Engineering

2) Data & Model Infrastructure: UCD Computer Science

3) Water Quality Sampling: UCD Microbiology & AgriFood and 
Biosciences Institute (AFBI)





Water Quality History Example
@ Newcastle Beach



Environmental Variables from Previous Studies

Statistical Models for Bathing Water Prediction 
are Data Hungry



MÉRA Data

MÉRA provides an excellent foundation 
for Bathing Water model development

*



MÉRA Grid Points
@ Newcastle Beach

 Many MÉRA grid points within a target catchment 
area

 Provides high spatial & temporal resolution (far 
exceeding what could be gathered by gauges)



MÉRA Grid Points
@ Newcastle Beach

 Precipitation (& soil moisture) used from ALL points 
within the catchment area.

 Only the point closest to the sampling point is used 
for the other variables.



MÉRA Grid Points
@ Newcastle Beach

 Precipitation (& soil moisture) used from ALL points 
within the catchment area.

 Only the point closest to the sampling point is used 
for the other variables.

MERA Variables
 Wind direction
 Wind speed
 Atmospheric pressure
 Air Temperature
 Direct Normal Irradiance

Non-MERA Variables
 Tides 
 Streamflow
 Rain Gauge
 Rain Radar



Summary of Modelling Approaches

APPROACH DESCRIPTION STRENGTHS WEAKNESSES

Decision 
Threshold 
Optimizer

Determines what level of rainfall / 
streamflow has correlated with past 
FIB exceedance levels to predict 
future occurrences.

• Uses readily available 
data (e.g. rainfall, 
streamflow)

• Implemented in Excel

• Low correlations 
between single 
variables & FIB levels

• Does not consider 
multiple-variable 
drivers.

Decision Tree 
Models

Trains models based on past 
relationship between environmental 
variables & FIB concentrations to 
predict future occurrences.

• Can utilize many 
variables

• Can represent non-
linear responses.

• Higher data 
requirements

• Can suffer from “over-
training”

Ensemble 
Decision Tree 
Models

Generates probabilistic predictions of 
FIB concentrations, based on many 
individual Decision-Tree models.

• Less susceptible to 
“over-training”

• Improved predictive 
power

• Driving variables are 
more difficult to 
interpret

• Higher data & 
technical 
requirements.



Historical 
WQ Samples

MERA
Data

Response Variable Predictor Variable

1. Model Development

Model Training / 
Testing



Model Training Model Testing

MÉRA Data

1. Model Development



Model Training / 
Testing

Model 
Implementation

(Predictions)

Compliance
Samples

HARMONIE 
Data

Response Variable Predictor Variable

2. Model Implementation



Bathing Water Quality Forecasts utilizing HARMONIE Data

2. Model Implementation



2. Model Implementation: Public Notification
Website

Mobile App



Model 
Implementation

(Predictions)

Historical 
WQ Samples

MERA
Data

HARMONIE 
Data

Response Variable Predictor Variable

3. Model Refinement

+ additional variables+ additional WQ samples 

Compliance
Samples

Model Training / 
Testing



Key Challenge

Lack of Historical Observed Water Quality Data (2007 – 2018)
 Total Water Quality Samples: 560 to 130 (most sites ~ 300)

 Poor Water Quality Samples: 40 to 2 (most sites ~  20 to 30)

 Relatively high proportion of non-meteorologically driven “Poor” 
samples (~ 20% to 30% at some sites)

 Impact:
 Too few samples to adequately train the model at some sites.

 Model is highly sensitive to the train / test split at other locations.

 Model is confounded by non-meteorologically driven events.
 Dogs, Birds, Horses, etc…



https://barkpost.com/life/17-dogs-who-will-
shamelessly-ruin-your-beach-day/

Non-Meteorologically Driven WQ Failures can’t be 
predicted (by this type of model)

Source of Contamination?
The Usual Suspects

https://barkpost.com/life/17-dogs-who-will-shamelessly-ruin-your-beach-day/


Model Development – Next Steps

Multi-Model Development Framework

 A wide range of non-linear classification and tree-based methods are 
available which can utilize multi-variate data (e.g. MERA, rain radar, tide).

 A framework for training and testing multiple different models in parallel 
is under development – utilizing the “Caret” package in R, which 
contains ~ 240 different machine leaning models.

“There is no such thing as a 
single, universally-best 

machine learning algorithm, 
and there are no context or 

usage-independent (a priori) 
reasons to favor one 

algorithm over all others.”

No Free Lunch Theorem





Variable Units
Variable 

Type
Location

Temporal 
Aggregation*

Variables @ 
Newcastle

Precipitation mm Numeric Catchment Sum 138**

Soil Moisture kg/m3 Numeric Catchment Mean 138**

Temperature °C Numeric Sample Point Mean 6

Atmospheric Pressure kPA Numeric Sample Point Mean 6

Direct Normal Irradiance kW/m2 Numeric Sample Point Sum 6

Wind Speed
Beaufort 

scale
Categorical Sample Point Mean 6

Wind Direction
Cardinal 
Direction

Categorical Sample Point Mode 6

* Data was aggregated over periods of 1, 6, 12, 24, 48, and 96 hours from the time of the sample.

** 22 MERA Points in Newcastle Catchment + 1 Catchment Mean x 6 Time Aggregations = 138 variables

MÉRA Variables



Model Ready DataData Setup 
Scripts

Calibrated Models 
Exported to Server

Model 
Development 

Scripts

Historic FIB 

Samples

MERA Data

Data Inputs

Data InputAssessment of 
Model 

Performance

Model
PredictionsCurrent FIB 

Samples

HARMONIE 

Data

Modelling Flowchart

Operational 
Model Scripts

Public 

Notification 

(App/Website)



Sensitivity

Specificity

Sensitivity / Specificity 
Trade-Off
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There is typically a trade-off between 
model sensitivity and specificity, and 
increasing one results in a decrease in 

the other.

Bathing Water Quality models 
typically achieve high 
specificity, while high

sensitivity is more difficult to 
achieve.

This is due to the relatively low 
frequency of WQ failures (at 
most sites), complex driving 

conditions, and the occurrence 
of non-meteorological drivers.

Low False Alarms High False Alarms

Increasing
True Positives



Source Sensitivity Specificity

Thoe et al. (2014)
“Predicting water quality at Santa Monica Beach: Evaluation of five different 

models for public notification of unsafe swimming conditions”

>30% >80%

California’s “Nowcast” System
https://beachreportcard.org/

>50% >85%

Scottish EPA 
R. Stidson, personal communication

>50% -

UK Environment Agency
D. Tyrell, personal communication

Scoring System Using a Range 
of Criteria (0 – 30)

Model Performance Standards: Sensitivity & Specificity

Following the levels set out by these standards, in our models we seek to 
maximize sensitivity while maintaining  a minimum specificity of 0.80.



Newcastle

Threshold Sensitivity Specificity

None 0.00 1.00

19 mm
2 days

0.17 0.98

8 mm
1 day

0.37 0.95

6 mm
1 day

0.49 0.89

4 mm 
1 day

0.51 0.87

7 mm
2 day

0.57 0.82

Example of Model Performance 
at Different Thresholds

More Conservative – Less Conservative


