

Complexity of low-frequency earthquakes activity in western Shikoku

Natalia Poiata¹, Jean-Pierre Vilotte¹, Nikolai Shapiro^{1,2}, Mariano Supino¹, and Kazushige Obara³

¹ Institut de Physique du Globe de Paris ² Institut des Sciences de la Terre, Université Grenoble Alpes ³ Earthquake Research Institute, The University of Tokyo

Introduction: Deep tectonic tremor and low-frequency earthquakes in Shikoku

Target of the study: low-frequency earthquakes (LFE) activity in western Shikoku

Main goal: high-resolution catalog of LFEs and space-time characteristics of activity

4-year LFE catalog for western Shikoku from continuous Hi-net data

Method:

BackTrackBB detections and location algorithm Multi-band statistical coherence-based method (Poiata et al., 2016; 2018; Supino et al., 2020)

Using 3-component continuous data

Results: ~176,800 detected and located LFEs

Clear clustering and segmentation of LFEs along strike of subducting slab

Strong spatial and temporal heterogeneity of activity

Sequences of intense LFE activity

Temporal view of LFE activity projected along strike of subducting slab

Partial catalog of LFEs during periods of energetic tremor sequences

Source characteristics analysed in Supino et al. (2020)

https://doi.org/10.1038/s41598-020-63584-6

OPEN Self-similarity of low-frequency earthquakes

M. Supino 1,2*, N. Poiata 1,3, G. Festa 2, J. P. Vilotte, C. Satriano 1,8 K. Obara

Low-frequency earthquakes are a particular class of slow earthquakes that provide a unique source of information on the physical processes along a subduction zone during the preparation of large earthquakes. Despite increasing detection of these events in recent years, their source mechanisms are still poorly characterised, and the relation between their magnitude and size remains controversial.

Along-strike space clustering and correlation of LFE activity

Space LFE activity functions - along-strike variation of activity in time

$$\Delta\overline{\rho}_l(\zeta,t;\Delta\zeta) = \frac{\rho(\zeta,t;\Delta\zeta) - \overline{\rho}(\zeta)}{\overline{\rho}(\zeta)} \qquad \text{sp}$$

Dist. along str.[km]

50

200

400

space-localised fluctuation

with $\rho(\zeta, t; \Delta \zeta)$ – binned event probability density function $\overline{\rho}(\zeta)$ – mean probability of event occurrence in space bin

800

Time [days from 2013-01-01]

Original LFE catalog projected along subduction strike direction

binning in space, $\Delta \zeta = 2km$

LFE activity function - localised 200 fluctuation

1200

1400

1000

 $\overline{
ho}(\zeta)$ bin-dependent estimation

 $\Delta \overline{\rho}_l(\zeta, t; \Delta \zeta)$ bin-dependent fluctuation estimation

 $\Delta \overline{\rho}_l(\zeta, t; \Delta \zeta)^+$ retaining positive part

Along-strike space clustering and correlation of LFE activity

Original catalog - along strike LFE projection

Statistical characteristics of along-strike LFE activity over 4-year time period

Information on variation of along-strike LFE occurrence patterns over 4-year period

4-year summary along-strike activity

4000

3000

Along-strike space clustering and correlation of LFE activity

Long-strike space clusical Defining main (along strike) regions of activity with the strike of activity long strike is a strike of activity long strike of activity long strike is a strike of activity long strik

Separating regions with similar characteristics of LFE activity

Along-strike activity correlation matrix -> spatial extent of regions

Defined 7 main regions

- different activity patterns
- distinct correlation features

Migration of LFE activity during major sequences

Estimating LFE activity front migration speed along strike of subducting slab

Procedure:
Cross-Correlation of
binned LFE activity functions

1320 1325

Time [days]

1340

1310 1315

Exploiting time-delay information from CC for LFE activity migration speed estimation

Time-delay measurements for strike bin-pairs

Migration of LFE activity during major sequences

Estimating LFE activity front migration speed along strike of subducting slab

LFE migration front speeds consistent with those of tectonic tremor from previous studies Patterns/directions of migration can vary significantly

Concluding remarks

LFE activity and short-term slow-slip events (sSSE)

Correlation between major LFE sequences and SSEs

Migration of LFE activity among different regions during SSEs

Summary

Detailed LFE catalog for SW Shikoku subduction zone; period 2013-2016

Spatial and temporal heterogeneity of LFE activity during analysed 4 years

Major LFE sequences - periods of intense activity often involving hole region

Clear along-strike clustering and segmentation: potential structural factor

Defined 7 main regions of LFE activity - patches of LFE sources with similar occurrence patterns

LFE front migration speeds - significant variability with the limits of previous analysis