
For a source to the North East,
Station Pair 1 will have stronger
energy in the surface wave
window. Station Pair 2 also has
energy, but we miss it.

The beamform map is
degraded.

Conclusion & Takeaways:
Beamforming / Backprojection and Full Waveform Source Inversion are similar*
*at least for the first iteration, depending on starting model, disregarding windowing choices, other restrictions apply

Both communities can learn from each other:
1) Beamform/backprojection methods should bemore rigorous; can account for prior information
2) Full-waveformmodelers can adapt the processing tricks developed by the beamform/
backprojection community

Awin-win situation:
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1. Introduction
Beamforming and backprojection methods offer a data-driven approach to image noise
sources, but provide no opportunity to account for prior information or iterate through
an inversion framework. In contrast, recent methods have been developed to locate
ambient noise sources based on cross-correlations between stations and the
construction of finite-frequency kernels, allowing for inversions over multiple iterations
(i.e., Tromp et al., 2010, Ermert et al. 2017, Sager et al. 2018). These kernel-based
approaches show great promise, both in mathematical rigour and in results, but may
remain difficult to understand or implement for the wider community. Here we show
that these two different classes of methods, beamforming and kernel-based inversion,
are achieving exactly the same result in certain circumstances. This means existing
beamforming and backprojection methods can also incorporate prior information in a
mathematically correct manner.
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Beamforming
We start with a straightforward correlation-based beamformer:

Backprojection Change the order
Instead of applying time shifts separately, collect
cross correlations first.

Add Prior Information
Now it gets fun.
With some knowledge of the background noise field, we can
compute synthetic waveforms and compare. The equation below
uses a least-squares misfit, but others are possible.

Iterate
The misfit describes the discrepancy between data and model. We could now
gridsearch again, perturbing the model gridpoints one-by-one and testing how
this affects that misfit. This gives us a gradient, which guides updates to the
model. The following shows a first gradient computed for a homogeneous
starting model.

A Note on Efficiency:
Nowhere else on this display do wemention adjoint methods. This is on purpose.
Everything described up until now could be described by gridsearching and perturbing a model. However,
that would be computationally terribly inefficient. Fortunately, there are tricks, like directly computing the
noise correlation wavefield and using adjoint methods to get a gradient appropriate to a particular misfit.

These are not described here, but see our paper coming soon!

A synthetic 2D example. Noise sources are a homogenous
background, with a stronger source to the North-East.
Synthetics are modelled with the Generalised
Interferometry scripts of Fichtner et al., 2016

Here specifically Matched Field Processing, is the same
shifting-and-correlating process, just with a gridsearch over
some spatial domain instead of over azimuths.

In this case we use only two-stations, and only one source
marked with a star.Δt1,2
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The time shift (whether in slowness-domain
or a spatial-domain) just tells you where in
the cross correlation to look.

Data Model Misfit
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Three-Station
Sensitivity Kernel

Grid search over azimuths
and slownesses. Each
slowness defines a plane
wave, for which delay
times are calculated.
Time shifts are applied.
Zero-lag correlation
coefficients give a "score."
Sum over station pairs.

Better beamforms Better pre-processing Better Source Inversions

Instead of a delta function, wemight use some window of
finite length. This could, for example, represent prior
expectations of wavelength-imposed smoothing on the
final image.

Gridsearch over (x,y) locations here,
apply time shifts and correlate to create
this figure.

Figure from Gal et al., 2018

Matched-Field Processing Source Sensitivity Kernel

Figure from Sager et al. 2018

We can take what we've learned back to beamforming. This is how our misfit function
looks for nearly all existing beamform algorithms:

If one has cross-correlated data for interferometry, creating a
beamform representatin of those correlations is trivial (see "Change
the Order" above). If we use various preprocessing techniques to get
better noise correlation functions, we can directly see the effect that
has on our effective noise source distribution.

See also Fichtner et al., 2016, for kernel-based images of the
effect of preprocessing. Also, see Seydoux et al., 2017 for an
approach that exploits beamforms to "even out" the incident
wavefield for better correlation function convergence.

2) Furthermore, Inversion schemes often rely on defining direct surface-wave windows (or other phases) to
compute misfits on. This is an unnecessary restriction. Instead, something like a beamform map can directly
inform where in a correlation to look. Also informative: a record section, slant stack, vespa-diagram, etc.
(Retailleau et al. 2017).

1) The beamforming/backprojection community has numerous image enhancement tools which could be incorporated into
inversion frameworks, such as:

- Using 3-component beamformers to constrain wavetype and polarization: Löer et al. 2018, Juretzek and Hadziioannou 2016,
Gal et al. 2018. This is already used for inversions by Xu et al., 2019!
- Using eigenvalue decompositions or other math tricks to isolate unique signals (i.e., MUSIC, MDVR, etc.)

Targeting where to look
in advance will better capture
relevant information.

These blue windows would be
better suited for an inversion
scheme to image this source.

Data Model Misfit

If instead we assume a homogeneous distribution of background sources as our prior
model, we can easily see if something else remains. This is similar to deconvolving an
array response function, but accounting for both array geometry and source assumptions.

Even though we (the ambient noise community) love to assume we have a homogeneous
background distribution of noise sources, we never implement this when it comes to
beamforming. The implicit uniform prior used in the first row states that energy is
equally likely to be propagating across the array at all slownesses, or that there is simply
no energy whatsoever. Both of those statements are actually very strong and unrealistic.


