Bayesian inference and uncertainty quantification for source reconstruction of radionuclides release

May 7, 2020

Bayesian inverse problem

PhD director : Marc Bocquet (CEREA) PhD supervisor : Olivier Saunier (IRSN) PhD supervisor : Yelva Roustan (CEREA)

Presentation plan

Context

Accident Ru-106

Bayesian problem

Uncertainties

Results

Perspectives

< A

Context			
00			

Context

Final purpose: Evaluate release of radionuclides

- IRSN role: evaluate sanitary + environmental consequences of a release of radionuclides;
- How? Use dispersion model which take in input

• The question of this PhD is: how to improve the estimation of this source term and quantify the corresponding uncertainties ?

Context			
00			

Context

Final purpose: Evaluate release of radionuclides

- IRSN role: evaluate sanitary + environmental consequences of a release of radionuclides;
- How? Use dispersion model which take in input

• The question of this PhD is: how to improve the estimation of this source term and quantify the corresponding uncertainties ?

Inverse modelling in a nutshell

イロト イヨト イヨト イヨト

æ

Detection of Ruthenium in September 2017 (Saunier et al., 2019)

 September-October 2017, concentrations of ¹⁰⁶Ru of unknown origin detected in Europe.

Figure: Max. concentrations of 106 Ru measured between the end of September 2017 and the beginning of October 2017.

Bayes and inverse modelling (Liu et al., 2017)

Bayes formula

Bayes' formula, with \mathbf{x} the vector of variables characterising the source and \mathbf{y} the observations:

$$\underbrace{\widetilde{p}(\mathbf{x}|\mathbf{y})}_{\text{Target}} = \frac{\underbrace{\widetilde{p}(\mathbf{y}|\mathbf{x})}_{p(\mathbf{y})} \underbrace{\widetilde{p}(\mathbf{x})}_{p(\mathbf{y})}}{p(\mathbf{y})}.$$
(1)

 $\mathbf{x} \Rightarrow$ Longitude x_1 , Latitude x_2 of the source; daily release \mathbf{q} ; uncertainties \mathbf{R} .

 $\mathbf{y}|\mathbf{x}$ diagnostics the difference between the dispersion model results computed with the source term \mathbf{x} and the observations \mathbf{y} .

Monte Carlo Markov chain (MCMC)

- Sampling to reconstruct the range of the possible sources;
- Use of the Parallel Tempering algorithm (to escape local minima) (Baragatti, 2011)

High temperature ow temperature

Image: A image: A

Where are the uncertainties

Adding meteorological and air dispersion modelling uncertainties?

 \mathbf{H} = resolvent of the atmospheric dispersion model or observation operator

$$\mathbf{y} = \mathbf{H}\mathbf{x} + \epsilon = \mathbf{y}_S + \epsilon. \tag{2}$$

Idea: using a mixture of different **H** computed with different fields and different dispersion parameters:

- meteorological uncertainty: using an ensemble weather forecast (a set of forecasts that represents potential weather outcomes);
- dispersion uncertainty: perturbed parameters (dry and wet deposit, Kz, release height).

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

 $\begin{array}{c|cccc} Context & Accident Ru-106 & Bayesian problem & Uncertainties & Results & Perspectives & References \\ 00 & 0 & 00 & 000 & 00 \end{array}$

Sampling over the weights of the members (Dumont Le Brazidec et al., 2020b), preparation.

Sampling of a range of $\mathbf{H}_1, ..., \mathbf{H}_{30}$ (30 members) Calculation of the predictions is then done with

$$\mathbf{H} = \sum_{i=1}^{N_{\text{meteo}}} w_i \mathbf{H}(m_i).$$
(3)

This adds 30 new variables to retrieve in the model: $(x_1, x_2, \mathbf{q}_1, ..., \mathbf{q}_{N_{imp}}, r) \rightarrow (x_1, x_2, \mathbf{q}_1, ..., \mathbf{q}_{N_{imp}}, r, w_1, ..., w_{30}).$

・ロト ・聞 ト ・ ヨト ・ ヨトー

臣

	Uncertainties		
	0000		

What is a good likelihood?

Figure: Two plumes and two observations. Each plume is best suited to a specific measurement. How to choose the most suited plume ?

	Bayesian problem	Results	
		0000	

Application to the Ru-106 accident (Dumont Le Brazidec et al., 2020a) Modelling

- \blacksquare > 1500 air concentration measurements used ;
- Domain of research:
 - location: from west Europe to Russia;
 - time: between the 22th of September and the 28th of September;
- ECMWF Era5 meteorological data are used HRES: $\Delta_x = 0.28125$, $\Delta_t = 1$ h; enhanced EDA: $\Delta_x = 0.5625$, $\Delta_t = 3$ h
- Modelling is performed using ldX Eulerian transport model;
- H computed over a spatial grid with a resolution of 1 degrees.

ContextAccident Ru-106Bayesian problemUncertaintiesResultsPerspectivesReferences00000000000000

Results with a HRES meteorology

Figure: Distribution of the variables describing the Ruthenium source using several likelihoods and the parallel tempering algorithm. L-L= log-Laplace, L-n=log-normal, L-C= log-Cauchy and y_t = likelihood threshold.

		Results 00●0	

Results with a EDA meteorology and the meteorology weight sampling strategy

Figure: Distribution of the variables using several likelihoods and with interpolation on weight members (parallel tempering). L-L= log-Laplace, L-n=log-normal, L-C= log-Cauchy and y_t = likelihood threshold.

Context	Accident Ru-106	Bayesian problem	Uncertainties	Results	Perspectives	References
00	O	00	0000	0000	00	

Discussions

- Magnitude of the release ranges between 100 and 350 TBq. Both 25th and 26th are considered as possible days of release.
- Assessment of the uncertainty on the location of the source enhanced by the use of various likelihoods.
- Evaluation of the uncertainty on the magnitude and the day of the release greatly improved by the use of an ensemble instead of a HRES meteorology.

Perspectives

- Reconstruction of the Chernobyl fires radionuclide (April 2020) source term;
- Reconstruction of the source term with quantification of the uncertainties on a more complex case study: the Fukushima accident;
- Mixing air concentration measurements with deposit measurements.

æ

		Perspectives	
		00	

Conclusion

Thanks for your attention !

(日)

표 문 표

- Baragatti, M., 2011: Sélection bayésienne de variables et méthodes de type Parallel Tempering avec et sans vraisemblance. thesis, Aix-Marseille 2.
- Dumont Le Brazidec, J., M. Bocquet, O. Saunier, and Y. Roustan, 2020a: MCMC methods applied to the reconstruction of the autumn 2017 Ruthenium 106 atmospheric contamination source. Atmospheric Environment X.
- Dumont Le Brazidec, J., M. Bocquet, O. Saunier, and Y. Roustan, 2020b: Uncertainties quantification in CBRN source assessment and application to the reconstruction of the autumn 2017 Ruthenium 106 atmospheric contamination source.
- Liu, Y., J.-M. Haussaire, M. Bocquet, Y. Roustan, O. Saunier, and A. Mathieu, 2017: Uncertainty quantification of pollutant source retrieval: comparison of Bayesian methods with application to the Chernobyl and Fukushima Daiichi accidental releases of radionuclides. *Quarterly Journal of the Royal Meteorological Society*, **143** (708), 2886–2901, doi:10.1002/qj.3138.
- Saunier, O., D. Didier, A. Mathieu, O. Masson, and J. Dumont Le Brazidec, 2019: Atmospheric modeling and source reconstruction of radioactive ruthenium from an undeclared major release in 2017. *Proceedings of the National Academy of Sciences*, **116** (50), 24 991, doi:10.1073/pnas.1907823116.

・ロト ・聞ト ・ヨト ・ヨト

æ