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Context

Final purpose: Evaluate release of radionuclides

m IRSN role: evaluate sanitary + environmental consequences of a
release of radionuclides;

m How? Use dispersion model which take in input
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Final purpose: Evaluate release of radionuclides

m IRSN role: evaluate sanitary + environmental consequences of a
release of radionuclides;

m How? Use dispersion model which take in input
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m The question of this PhD is: how to improve the estimation of
this source term and quantify the corresponding uncertainties ?




Context

oe

Inverse modelling in a nutshell

Measurements
+
Dlspersmn model

Meteorological fields

Impact:
Human
Environment

Dispersion model

Inverse modelling Evaluation of the release impact




Uncertainties

Accident Ru-106 Jayesian problem

Detection of Ruthenium in September 2017 (Saunier et al., 2019)

m September-October 2017, concentrations of 1°6Ru of unknown origin
detected in Europe.

300 mBq/m*
100 mBg/m*
50 mBa/m*
10 mBg/m*
5 mBa/m?
1 mBa/m*
0.1 mBa/m?

0.01 mBg/m?

Figure: Max. concentrations of 1°°Ru measured between the end of September
2017 and the beginning of October 2017.
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Bayesian problem
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Bayes and inverse modelling (Liu et a1, 2017)

Bayes formula

Bayes’ formula, with x the vector of variables characterising the
source and y the observations:

Likelihood Prior

Target —_— =
oxly) = YL PE, 0

x = Longitude z;, Latitude x2 of the source; daily release q;
uncertainties R.

y|x diagnostics the difference between the dispersion model
results computed with the source term x and the observations y.
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Monte Carlo Markov chain (MCMC)

m Sampling to reconstruct the range of the possible sources;

m Use of the Parallel Tempering algorithm (to escape local
minima) (Baragatti, 2011)

High temperature

Low temperature
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Uncertainties
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Where are the uncertainties

Coordinates of the release

Likelihood definition ] Dispersion mgdel
p( |Y) X p Y| X1 m q7 "”9\ Error variance
Prior definition Measurements [ Discrete function of the release

Meteorology

Bayesian inverse problem
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Adding meteorological and air dispersion modelling
uncertainties?

H = resolvent of the atmospheric dispersion model or
observation operator

y=Hx+e=ys+e (2)

Idea: using a mixture of different H computed with different
fields and different dispersion parameters:
m meteorological uncertainty: using an ensemble weather
forecast (a set of forecasts that represents potential weather
outcomes);

m dispersion uncertainty: perturbed parameters (dry and wet
deposit, Kz, release height).

Bayesian inverse problem



Uncertainties
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Sampling over the weights of the members (Dumont Le Brazidec

et al., 2020b), preparation.

Sampling of a range of Hy, ..., H3p (30 members)
Calculation of the predictions is then done with

Nmeteo

H= Z wzH(m,) (3)

i=1

This adds 30 new variables to retrieve in the model:
(:L'la 2,91, -+ qumpa ’I") — (xla 2,41, .- qump7 r,wiy, ..., w30) .
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What is a good likelihood?

1000 miliBa/m3 1000 miliBa/m3

100 miliBa/m3 100 milB/m3
40 milisa/m3 40 milisg/m3
10 miigam3 10 milBg/m3

1 miliB/m3 1 milisq/m3
01 milBm3 01 milBgm3
001 miliga/m3 001 milam3
0.001 milBaim3 0.001 miliaim3

Figure: Two plumes and two observations. Each plume is best suited
to a specific measurement. How to choose the most suited plume 7
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Results
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Application to the Ru-106 accident (Dumont Le Brazidec et al., 2020a)
Modelling

m > 1500 air concentration measurements used ;

m Domain of research:

® location: from west Europe to Russia;
® time: between the 22t of September and the 28*" of September;

m ECMWEF Era5 meteorological data are used
HRES: A, = 0.28125, A; = 1h; enhanced EDA: A, = 0.5625, A; = 3h

m Modelling is performed using 1dX Eulerian transport model;

H computed over a spatial grid with a resolution of 1 degrees.
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Results with a HRES meteorology
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Figure: Distribution of the variables describing the Ruthenium source using
several likelihoods and the parallel tempering algorithm. L-L= log-Laplace,
L-n=log-normal, L-C= log-Cauchy and y;= likelihood threshold.
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Results with a EDA meteorology and the meteorology weight sampling strategy
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Figure: Distribution of the variables using several likelihoods and with
interpolation on weight members (parallel tempering). L-L= log-Laplace,
L-n=log-normal, L-C= log-Cauchy and y;= likelihood threshold.
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Discussions

m Magnitude of the release ranges between 100 and 350 TBq.
Both 25" and 26" are considered as possible days of
release.

m Assessment of the uncertainty on the location of the source
enhanced by the use of various likelihoods.
m Evaluation of the uncertainty on the magnitude and the

day of the release greatly improved by the use of an
ensemble instead of a HRES meteorology.
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Perspectives

m Reconstruction of the Chernobyl fires radionuclide (April
2020) source term;

m Reconstruction of the source term with quantification of the
uncertainties on a more complex case study: the Fukushima
accident;

m Mixing air concentration measurements with deposit
measurements.
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Conclusion

Thanks for your attention !
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