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INTRODUCTION

- We consider a stably-strafified layer of rotating plasma in gravitational field in
Boussinesqg approximation with linear density profile

» Taking iIntfo account effects of stratification in magnetohydrodynamic models of a
rotating plasma is important for the analysis of many phenomena and
astrophysical objects, such as

» solar fachocline

» stably-stratified regions in stars (radiating zones) and planets (outer liquid layer of the
core)

» oscillations of rotating stars and the Sun

» astrophysical disks and exoplanets

* Moreover, it dllows one 1o significantly expand the possibilities for interpreting the
available observational data of large-scale Rossby waves on the Sun
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TRADITIONAL AND NON-TRADITIONAL
f-PLANE APPROXIMATION

(ou -
o Hf XU+ VP +p 'Z+ By x (VxB) =0, linearized momentum equation
0B . - . .
! - (Bo V)u =0, linearized equation for magnetic field
ot
6_,0’ + N2uw. =0 linearized equation for density
at o
X divu = 0. linearized divergence-free condition for velocity

In f-plane approximation we suppose that Coriolis

s — ' r parameter f = 20 is constant jL
Uy =\0.Bp = COnST, traditional non-traditional

=—p(2), p(2) = N?zE 2| 7 =(00,Ff),f, =2Qsin6 = (0 fH,fV) fr = 2Qsinf, fy = 2Qcos b

taking into account the
horizontal component of
/ the Coriolis force

— Brunt-Vaisala frequency
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SOLUTION OF DISPERSION EQUATION ON 3/15
TRADITIONAL f-PLANE IN FORM OF
MAGNETIC INERTIA-GRAVITY WAVES

k2 k? k?
w* —wz( VZE—NZR—’Z‘+2(BO-k)2) + (By - k)? ((Bo-k)2 —Nzk—’;) =0, kp = (kyk,,0)

1 k2 k? 1 k2
®migsp = T |5 (fgﬁ — N2_2+2(By - k)Z) + m\/fgkg +4(Bo - B)*fj .5 — 2fkKEN2kf + N*kj, (1)
In the absence of magnetic field dispersion relation (1) describes
k2 k? inertio-gravity wave in neutral fluid, for which is satisfied the
By =0 |— wyr,, = % fVZ—Z — Nz—2 condition of group velocity perpendicularity to wave vector
k k : . .
Vig,, - k= 0. We find out that in the presence of magnetfic field
this condition is violated: v,,;4., -k # 0
k, <k |—— w, = +(By - k)y, In the case of waves propagation in horizontal plane (ky, k)

dispersion relation (1) describes Alfven waves

In the case of waves propagation along the vertical

2) component of wave vector dispersion relation (1) describes

2 2
k=k, | = w, ==+ L+ B2 k2 + fv\/% + B3 k2 . | .
vertical magnetic waves with frequency w,, (2)




SOLUTION OF DISPERSION EQUATION ON 4/15
TRADITIONAL f-PLANE IN FORM OF

MAGNETOSTROPHIC WAVES

k2 k? k?
w* — w? (fvzﬁ - Nzk—’; + 2(B, - k)z) + (By - k)? ((BO k)% — Nzk—’;) =0, kp = (kyk,,0)
® =+ Y25 _ N2k o, k2) =L [Fiks 4 4By - RO*2 K — 2p2K2N2RE 4 N4K (3)
mstrsp — — |2 \JV 2 % 0 2 Jc2 Vhz 0 V 2 Vvhz h h
B =0 e This type of wave has no analogue in neutral fluid dynamics and
0 disappears in the absence of magnetic field
In the case of waves propagation in horizontal plane (k,, k)
SN — . 2 _ N2 xr Ity
kr <k @mgr i\/(BO e = A dispersion relation (3) describes magnetic gravity waves
In the case of waves propagation along the vertical
K=k, | —w, = ijfz_ﬁ+352k§ —fv\/fff"'Bgzk% (4) component of wave vector dispersion relation (3) describes

vertical magnetic waves with frequency w,, (4)



SOLUTION OF DISPERSION EQUATION ON 5/15
NON-TRADITIONAL f-PLANE IN FORM OF
MAGNETIC INERTIO-GRAVITY WAVES

2
frky+foks kZ kZ
G — <( il ykz ) _ Nzk—’;+ 2(By - k)2> + (By - k)? ((BO - k)? — N? k—’;) =0, ky = (ky, k,,0)

2
1 (fuky+fvk, K fuk +fv z 2
migrsp zijz(( osfoke) N2t 1 2(8, - 102) zku/(fnk + foky)* +4(By - kot L E 2 fuky + fole,) NG + NS (5)

B —o (fHky+kaZ)2 k2 In the absence of magnefic field dispersion relation (5) describes
0 — Wgrisp = L Jc2 — N? 12 inertio-gravity wave in neutral fluid

fiiky N2 fEk2 [ fik2 . N4
ke <k 7/ Wmigr = i\/ Zkﬁy —7 T Bok)f + \/ 4k,%y kﬁy —2N* +4(Bo - Iy, ) + 7 (6)

in the case of waves propagation in horizontal plane (ky, k,) dispersion relation (5)
describes magnetic inertio-gravity waves (6)

In the case of waves propagation along the vertical component of wave vector dispersion relation (5) describes
vertical magnetic waves with frequency w,, (2)



SOLUTION OF DISPERSION EQUATION ON 6/15
NON-TRADITIONAL f-PLANE IN FORM OF
MAGNETOSTROPHIC WAVES

2
frky+foks kZ kZ
G — <( il ykz ) _ Nzk—’;+ 2(By - k)2> + (By - k)? ((BO - k)? — N? k—’;) =0, ky = (ky, k,,0)

Wmstrigp

2
1 ((Fuky+fvk, K2 fuk +fv - 2
= i\/;(( = = L _ N2 2+ 2(Bo - k)2 Zkz\/(fHk +f,,k) + 4(B, - k)4( 2 = )’ — 2(fuky + fyk,) N2k} + N*k}, (7)

none This type of wave has no analogue in neutral fluid dynamics and disappears in
By=0 |—— © the absence of magnetic field

kaZ N2 f2k2 f2k2 N4,
ky Kk | —m—= Wty = i\/ szﬁy_7+ (By - k)? _\/fkg( l;lcley_ 2N2 + 4(B, - k)ﬁ) +—-(8)

in the case of waves propagation in horizontal plane (ky, k,) dispersion relation (7) describes
magnetostrophic waves

In the case of waves propagation along the vertical component of wave vector dispersion relation (7) describes
vertical magnetic waves with frequency w,, (4)
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TRADITIONAL AND NON-TRADITIONAL
B-PLANE APPROXIMATION

(9%, + e + o L J 9By +B 95, B an —B 95 0, linearized equation for
_ _ —_— — — | = u
yot f o2 ay Pyt vt et g\ By TBay B, B ) =0 . x
ou oP 0B 0B 0B 0B : : :
aty 1L T A % + Bxa_; + B, ayz — Bxa_xy = Bza_zy = (, linearized equation for u,,
4
aautz — [k + ZP +p' + B, aaB By% _ Bx% — B, aal;Z =0, linearized equation for u,
0B a0’ linearized equation for magnetic field,
— (_’0 V)i =0, P + N2u, =0, divi = 0. density and divergence-free condition
\ ot dt for velocity

In B-plane approximation we suppose that Coriolis

Background state: “f parameter f = 20 varies slightly with smalll latitude variations H
Up = 0.8y = const, iti non-traditional

. traditional
Po — —~ 2., Po
%z = P@).p(2) =N"z"7 P (0,f
- - ) anVI)J
N? — Brunt-Vdisald frequency _ g = (0,0, fV’;’ o fv = fv + By,
fyr = 2Qsin =°;r ZJFQBCOS 0 (0= 00)R = fur = 20 cos 8y — 2Qsin Gy (8 — 6,)R =
R =fut+vy

Otaking into account the horizontal component of the Coriolis force



8/15

SOLUTIONS OF DISPERSION EQUATION ON
TRADITIONAL pg-PLANE

kK2w* + Bkyw? — w?|fFkZ — N2k} + 2k%(By - k)?]| — Bkyw[(By - k)2 — N?] +(By - k)? [k*(By - k)? — N?kE| = 0, ky, = (ky, ky, 0) (9)

In the case of waves propagation in horizontal plane (k,,k,) dispersion equation (?) has solutions in form
of magneto-Rossby waves (10), (11) and magnetic gravity wave

Wmgr = i\/(BO ’ k)}zl — N?

k, <k

1

\/"’2"%+4(30-k)2 (10) —ﬁ—"g—l\/%fﬁﬂwo-k)z (11)
h

2 k?l' Zkh 2
Bk, H ky =k, ky =k, n hos no Tanlalof?qg By =0
_ _ in  neutral  flui
k2 > g, = *Boyky, < dynamics

In the case of waves propagation along the vertical component of wave vector dispersion equation (?)
describes vertical magnetic waves w,, (2), w,, (4)

» (Bo-k)?[k?(Bo-k)2—N?]

In low-frequency limit dispersion equation ~ =
(9) has qsolu’rixc/m in f%rm of q’rhree— k, «< k ©MRsp Blx[(Bo-k)2—N?] £ \1 o0
dimensional magneto-Rossby wave (12) / N2k,
w ~
In the case of waves propagation in horizontal a0 £ k2 — N2k
plane (ky, ky) dispersion relation (12) has a form OyRe = ki (Bo-K) (13) k, < k
of dispersion relatfion for magneto-Rossby wave SW Bkx wp = _ﬁkx
in shallow water approximation (13) ki




SOLUTIONS OF DISPERSION EQUATION ON 9/15
NON-TRADITIONAL B-PLANE

kK*o* + kyw? [ﬁ - VI,E—Z] -’ [(fHky + kaz)z — N?kp; + 2k* (B, - k)z] — kyw [(Bo - k)? (B — V%) — BNZI +
y y
+(By - k)2[k2(B, - k) — N%kZ] =0, kn= (ky, ky,0) (14)

k =k, In the case of waves propagation along the x-component of wave vector dispersion equation (14) has solutions
in form of magneto-Rossby waves (10), (11)
Wi + |(1/2)(f2/2 — N?/2 + B2kZ) + \/(fH/Z — N2/2)? + f2B2k2 (15) In the case of waves propagation along the y-component of
k=k, 7 g wave vector dispersion equation (14) has solutfions in form of

one dimensional magnetic inertio-gravity wave (15) and
Omstr, = \/(1/2)(1?1/2 — N2/2 + B2k2) — \/(fy/z — N2/2)2 + fZB2k2 (16) one-dimensional magnetostrophic wave (16)

In the case of waves propagation along the vertical component of wave vector dispersion equation (14) describes vertical
magnetic waves w,_ (2). w,,(4)

In low-frequency limit dispersion equation W MR ~ (Bo-I0)*[Ik*(Bo k)~ Nk (17) B, =0
(14) has solution in form of three- k, < k 3 kx[(BO-k)2<ﬁ—yﬁ>—[}N2] \
dimensional magneto-Rossby wave (17) ky
2
In the case of waves propagation in horizontal WRryp ! ﬁk; -
plane (ky, k,) dispersion relation (17) has a form w ~ ki (Bo-K) (13) (fuky + fokz)” = N2k,
of dispersion relation for magneto-Rossby wave MRsw Bk ky <k Bk,

(UR:_

in shallow water approximation (13) K2



PHASE MATCHING CONDITION

wq(ky) + wy(ky) = ws(ks), ki + k,

:k3

plane

plane

k=k:

1:w,,, 2: g, + wy,

k=kx, ky=0.1, f<1

k=kx, ky=0.1, fu>>1

w

\/ kzky, kx=0.1, fu>>1

1: Wmigr 2: Wmstrr + Wmstr

1: wmig,, 2: wmstr, + wmlg[

1 w

' 1
/ K=k

w

A

2

k=Kkx

k=kx

1wy, 20 Opgr + Oy,

1: Wmgr, 2: Wy, + Omgr

1: Wiy, 2: Wmr, T Omr,

The intersection of dispersion curves
shifted from each other is an
indicator of the satisfaction of the
phase matching condition

non-trad. g-plane
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MULTISCALE ASYMPTOTIC METHOD

Let us present the solution of the MHD Boussinesg equations in form of an asymptotic series in small
parameter g

?i — %) - gq_l) + qu_Z) + o q, - stationary solution, q, - linear solution, gz - quadratic nonlinear effect

The equations that govern correction due to nonlinear effect can be obtained in the
second-order approximation in parameter e. The right-hand side of this equation

contains resonance terms that lead to linear growth of the solution and violatfion of
£%q, < £q, on a large scale

To avoid this, we infroduce a slowly-varying amplitude that depends on slow time (T;) and large space
scales (X1,Y4,7Z4)

q(T1,X1,Y1,Z l)ei(“’TO_kxX o—kyYo—kzZo) (To, Xo, Yo) - “faist’” variables (Ty, X1, Y1) - “slow'’ variables

o 0 o a9 d o 4 d 9 @
s T
ot aTo 6T1 0x 6X0 6X1 ay aYO aYl 0z

0 0
A U gazl
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COMPATIBILITY CONDITION

By means of our new form of solution we obtain system in the second-order approximation in
parameter g in following form

A(To,X0,Y0,Z0)qz = —F(T1,X1.Y1,Z1)q1 — G(T9, X0, Y0, Zo)(q1,91)

\ /

Now we can eliminate the resonant terms in the right-hand side using compatibility condition:

/ \

orthogonality of the right hand side to the kernel of a linear operator on the left-hand side
Multiplying the system by eigenvector of linear operator, we obtain the system in following form
ZA=0 = —2Fq, —2G(q;,q) =0 >

Z - eiegenvector for A




EQUATIONS FOR AMPLITUDES OF THREE 13/15
INTERACTING WAVES

We introduce he solution in form of a sum of three interacting waves, safisfying phase matching condition

=¢a( ) “91+1/Ja( ) "‘92+)(ﬁ’(k_3))e"‘93+c.c.

Writing out successively terms proportional to e'®1, ez, and e'¥3, we obtain a system of equations that
govern three amplitudes of interacting packets of waves in the Boussinesq approximation:

( _ * B 0 0 0 9,
Sl¢ flw*X ’ St = Tigr- 0T, tPigy- 90X, T aigys Y, twioo- 07, Coefficients f;depend only on the
1520 = fLd"x, initial conditions and characteristics
_ differential operator with respect to of interacting waves.
S3X = [29Y.

the “slow"” arguments

Significant differences between the obtained amplitude equations for
different Coloriolis approximations and different waves interactions are
contained in differential operators s; and coefficients f;




PARAMETRIC INSTABILITIES

14/15

The system of amplitude equations for three interacting waves is universal system for describing
parametric instabilities. Thus we have two types of parametric instabilities in magnetohydrodynamic
flows of stratified rotating plasma in Boussinesq approximation for all Coriolis parameter approximations

First type realizes when one
amplitude is large compared
with another two at the initial

moment

$=¢o > x

decay of wave w( k1)
into two waves w, (k;) and w;(k3)
with instability increment

B /lfzfsl _If4l
= |7‘27‘3||¢0|>0 = 74|

Second type realizes when
one amplitude is small
compared with another two
at the initial moment

¢<<¢:¢0'X:XO

amplification of wave w4 ( kq)
by two waves w,(k;) and w3 (k3)
with instability increment

[Poxol >0
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CONCLUSION

Linearized magnetohydrodynamic equations in Boussinesq approximation for rotating
stratified layer of plasma with linear density profile are solved in four cases of Coriolis
parameter approximation

Linear solutions are obtained in form of waves govern by buoyancy, Coriolis and Lorentz
forces

» Three-dimensional magnetic inertio-gravity and magnetostrophic waves
» Low-frequency magneto-Rossby waves

By means of non-traditional approximations influence of horizontal component of Coriolis
parameter is studied in conjunction with effects of stratification

Dispersion curves of all obtained wave types are studied to satisty phase matching
condition

Equations for amplitudes of three interacting waves are obtained by means of multiscale
asymptotic method for all identified types of interactions. Parametric instabilities are
studied and their increments are found.
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