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• We consider a stably-stratified layer of rotating plasma in gravitational field in

Boussinesq approximation with linear density profile

• Taking into account effects of stratification in magnetohydrodynamic models of a

rotating plasma is important for the analysis of many phenomena and

astrophysical objects, such as

solar tachocline

stably-stratified regions in stars (radiating zones) and planets (outer liquid layer of the

core)

oscillations of rotating stars and the Sun

astrophysical disks and exoplanets

• Moreover, it allows one to significantly expand the possibilities for interpreting the

available observational data of large-scale Rossby waves on the Sun

INTRODUCTION
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TRADITIONAL AND NON-TRADITIONAL 
𝑓 -PLANE APPROXIMATION 

𝜕𝑢

𝜕𝑡
+ Ԧ𝑓 × 𝑢 + 𝛻𝑃 + 𝜌′ መԦ𝑧 + 𝐵0 × 𝛻 × 𝐵 = 0,

𝜕𝐵

𝜕𝑡
− 𝐵0𝛻 𝑢 = 0,

𝜕𝜌′

𝜕𝑡
+ 𝑁2𝑢𝑧 = 0,

div 𝑢 = 0.

linearized momentum equation

linearized equation for magnetic field

linearized equation for density

linearized divergence-free condition for velocity

Background state:

𝑢0 = 0,𝐵0 = 𝑐𝑜𝑛𝑠𝑡,

𝜕𝑃0

𝜕𝑧
= − ҧ𝜌(𝑧), ҧ𝜌 𝑧 = 𝑁2𝑧

෦𝜌0

𝑔

𝑁2 − Brunt–Väisälä frequency

𝜌′ =
𝜌𝑔

෦𝜌0
,  𝑃 =

𝑝

෦𝜌0
,  𝐵 =

𝑏

4𝜋෦𝜌0

In 𝑓-plane approximation we suppose that Coriolis 

parameter Ԧ𝑓 = 2Ω is constant

traditional non-traditional

Ԧ𝑓 = 0,0, 𝑓𝑉 , 𝑓𝑉 = 2Ω sin 𝜃 Ԧ𝑓 = 0, 𝑓𝐻 , 𝑓𝑉 , 𝑓𝑉 = 2Ω sin 𝜃 , 𝑓𝐻 = 2Ω cos 𝜃

taking into account the
horizontal component of
the Coriolis force
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SOLUTION OF DISPERSION EQUATION ON 
TRADITIONAL 𝑓 -PLANE IN FORM OF

MAGNETIC INERTIA-GRAVITY WAVES

𝜔4 − 𝜔2 𝑓𝑉
2 𝑘𝑧

2

𝑘2
− 𝑁2 𝑘ℎ

2

𝑘2
+ 2 𝐵0 ∙ 𝑘

2 + 𝐵0 ∙ 𝑘
2 𝐵0 ∙ 𝑘

2 − 𝑁2 𝑘ℎ
2

𝑘2
= 0, 𝒌𝒉 = (𝑘𝑥, 𝑘𝑦 , 0)

𝝎𝒎𝒊𝒈𝟑𝑫 = ±
𝟏

𝟐
𝒇𝑽
𝟐 𝒌𝒛

𝟐

𝒌𝟐
−𝑵𝟐 𝒌𝒉

𝟐

𝒌𝟐
+ 𝟐 𝑩𝟎 ∙ 𝒌

𝟐 +
𝟏

𝟐𝒌𝟐
𝒇𝑽
𝟒𝒌𝒛

𝟒 + 𝟒 𝑩𝟎 ∙ 𝒌
𝟒𝒇𝑽

𝟐 𝒌𝒛
𝟐

𝒌𝟐
− 𝟐𝒇𝑽

𝟐𝒌𝒛
𝟐𝑵𝟐𝒌𝒉

𝟐 +𝑵𝟒𝒌𝒉
𝟒 (1)

𝑩𝟎 = 𝟎 𝜔𝑔𝑟3𝐷 = ± 𝑓𝑉
2
𝑘𝑧
2

𝑘2
− 𝑁2

𝑘ℎ
2

𝑘2

In the absence of magnetic field dispersion relation (1) describes
inertio-gravity wave in neutral fluid, for which is satisfied the
condition of group velocity perpendicularity to wave vector
𝒗𝑖𝑔3𝐷 ∙ 𝒌 = 0. We find out that in the presence of magnetic field

this condition is violated: 𝒗𝑚𝑖𝑔3𝐷 ∙ 𝒌 ≠ 0

𝑘𝑧 ≪ 𝒌 𝜔𝑎 = ± 𝐵0 ∙ 𝑘 ℎ In the case of waves propagation in horizontal plane (𝑘𝑥, 𝑘𝑦)

dispersion relation (1) describes Alfven waves

𝜔𝑧1 = ±
𝑓𝑉
2

2
+ 𝐵0𝑧

2 𝑘𝑧
2 + 𝑓𝑉

𝑓𝑉
2

4
+ 𝐵0𝑧

2 𝑘𝑧
2 (2)𝒌 = 𝑘𝑧

In the case of waves propagation along the vertical
component of wave vector dispersion relation (1) describes
vertical magnetic waves with frequency 𝜔𝑧1(2)
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SOLUTION OF DISPERSION EQUATION ON 
TRADITIONAL 𝑓 -PLANE IN FORM OF

MAGNETOSTROPHIC WAVES

𝝎𝒎𝒔𝒕𝒓𝟑𝑫 = ±
𝟏

𝟐
𝒇𝑽
𝟐 𝒌𝒛

𝟐

𝒌𝟐
− 𝑵𝟐 𝒌𝒉

𝟐

𝒌𝟐
+ 𝟐 𝑩𝟎 ∙ 𝒌

𝟐 −
𝟏

𝟐𝒌𝟐
𝒇𝑽
𝟒𝒌𝒛

𝟒 + 𝟒 𝑩𝟎 ∙ 𝒌
𝟒𝒇𝑽

𝟐 𝒌𝒛
𝟐

𝒌𝟐
− 𝟐𝒇𝑽

𝟐𝒌𝒛
𝟐𝑵𝟐𝒌𝒉

𝟐 +𝑵𝟒𝒌𝒉
𝟒 (3)

𝜔4 − 𝜔2 𝑓𝑉
2 𝑘𝑧

2

𝑘2
− 𝑁2 𝑘ℎ

2

𝑘2
+ 2 𝐵0 ∙ 𝑘

2 + 𝐵0 ∙ 𝑘
2 𝐵0 ∙ 𝑘

2 − 𝑁2 𝑘ℎ
2

𝑘2
= 0, 𝒌𝒉 = (𝑘𝑥, 𝑘𝑦 , 0)

𝑩𝟎 = 𝟎 This type of wave has no analogue in neutral fluid dynamics and
disappears in the absence of magnetic field

𝑘𝑧 ≪ 𝒌 𝜔𝑚𝑔𝑟 = ± 𝐵0 ∙ 𝑘 ℎ
2 − 𝑁2 In the case of waves propagation in horizontal plane (𝑘𝑥, 𝑘𝑦)

dispersion relation (3) describes magnetic gravity waves

𝜔𝑧2 = ±
𝑓𝑉
2

2
+ 𝐵0𝑧

2 𝑘𝑧
2 − 𝑓𝑉

𝑓𝑉
2

4
+ 𝐵0𝑧

2 𝑘𝑧
2 (4)𝒌 = 𝑘𝑧

In the case of waves propagation along the vertical
component of wave vector dispersion relation (3) describes
vertical magnetic waves with frequency 𝜔𝑧2(4)

none
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SOLUTION OF DISPERSION EQUATION ON 
NON-TRADITIONAL 𝑓 -PLANE IN FORM OF

MAGNETIC INERTIO-GRAVITY WAVES

𝜔4 − 𝜔2 𝑓𝐻𝑘𝑦+𝑓𝑣𝑘𝑧
2

𝑘2
− 𝑁2 𝑘ℎ

2

𝑘2
+ 2 𝐵0 ∙ 𝑘

2 + 𝐵0 ∙ 𝑘
2 𝐵0 ∙ 𝑘

2 − 𝑁2 𝑘ℎ
2

𝑘2
= 0, 𝒌𝒉 = (𝑘𝑥 , 𝑘𝑦 , 0)

𝝎𝒎𝒊𝒈′𝟑𝑫 = ±
𝟏

𝟐

𝒇𝑯𝒌𝒚+𝒇𝒗𝒌𝒛
𝟐

𝒌𝟐
− 𝑵𝟐 𝒌𝒉

𝟐

𝒌𝟐
+ 𝟐 𝑩𝟎 ∙ 𝒌

𝟐 +
𝟏

𝟐𝒌𝟐
𝒇𝑯𝒌𝒚 + 𝒇𝒗𝒌𝒛

𝟒
+ 𝟒 𝑩𝟎 ∙ 𝒌

𝟒 𝒇𝑯𝒌𝒚+𝒇𝒗𝒌𝒛
𝟐

𝒌𝟐
− 𝟐 𝒇𝑯𝒌𝒚 + 𝒇𝒗𝒌𝒛

𝟐
𝑵𝟐𝒌𝒉

𝟐 +𝑵𝟒𝒌𝒉
𝟒 (5)

𝑩𝟎 = 𝟎 𝜔𝑔𝑟′3𝐷 = ±
𝑓𝐻𝑘𝑦 + 𝑓𝑣𝑘𝑧

2

𝑘2
− 𝑁2

𝑘ℎ
2

𝑘2

In the absence of magnetic field dispersion relation (5) describes
inertio-gravity wave in neutral fluid

𝑘𝑧 ≪ 𝒌

in the case of waves propagation in horizontal plane (𝑘𝑥 , 𝑘𝑦) dispersion relation (5)

describes magnetic inertio-gravity waves (6)

In the case of waves propagation along the vertical component of wave vector dispersion relation (5) describes
vertical magnetic waves with frequency 𝜔𝑧1(2)

𝜔𝑚𝑖𝑔′ = ±
𝑓𝐻
2𝑘𝑦

2

2𝑘ℎ
2 −

𝑁2

2
+ 𝐵0 ∙ 𝑘 ℎ

2 +
𝑓𝐻
2𝑘𝑦

2

4𝑘ℎ
2

𝑓𝐻
2𝑘𝑦

2

𝑘ℎ
2 − 2𝑁2 + 4 𝐵0 ∙ 𝑘 ℎ

2 +
𝑁4

4
(6)
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SOLUTION OF DISPERSION EQUATION ON 
NON-TRADITIONAL 𝑓 -PLANE IN FORM OF

MAGNETOSTROPHIC WAVES

This type of wave has no analogue in neutral fluid dynamics and disappears in
the absence of magnetic field

none

𝜔4 − 𝜔2 𝑓𝐻𝑘𝑦+𝑓𝑣𝑘𝑧
2

𝑘2
− 𝑁2 𝑘ℎ

2

𝑘2
+ 2 𝐵0 ∙ 𝑘

2 + 𝐵0 ∙ 𝑘
2 𝐵0 ∙ 𝑘

2 − 𝑁2 𝑘ℎ
2

𝑘2
= 0, 𝒌𝒉 = (𝑘𝑥 , 𝑘𝑦 , 0)

𝝎𝒎𝒔𝒕𝒓′𝟑𝑫 = ±
𝟏

𝟐

𝒇𝑯𝒌𝒚+𝒇𝒗𝒌𝒛
𝟐

𝒌𝟐
−𝑵𝟐 𝒌𝒉

𝟐

𝒌𝟐
+ 𝟐 𝑩𝟎 ∙ 𝒌

𝟐 −
𝟏

𝟐𝒌𝟐
𝒇𝑯𝒌𝒚 + 𝒇𝒗𝒌𝒛

𝟒
+ 𝟒 𝑩𝟎 ∙ 𝒌

𝟒 𝒇𝑯𝒌𝒚+𝒇𝒗𝒌𝒛
𝟐

𝒌𝟐
− 𝟐 𝒇𝑯𝒌𝒚 + 𝒇𝒗𝒌𝒛

𝟐
𝑵𝟐𝒌𝒉

𝟐 + 𝑵𝟒𝒌𝒉
𝟒 (7)

𝑩𝟎 = 𝟎

𝑘𝑧 ≪ 𝒌

in the case of waves propagation in horizontal plane (𝑘𝑥 , 𝑘𝑦) dispersion relation (7) describes

magnetostrophic waves

In the case of waves propagation along the vertical component of wave vector dispersion relation (7) describes
vertical magnetic waves with frequency 𝜔𝑧2(4)

𝜔𝑚𝑠𝑡𝑟′ = ±
𝑓𝐻
2𝑘𝑦

2

2𝑘ℎ
2 −

𝑁2

2
+ 𝐵0 ∙ 𝑘 ℎ

2 −
𝑓𝐻
2𝑘𝑦

2

4𝑘ℎ
2

𝑓𝐻
2𝑘𝑦

2

𝑘ℎ
2 − 2𝑁2 + 4 𝐵0 ∙ 𝑘 ℎ

2 +
𝑁4

4
(8)
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TRADITIONAL AND NON-TRADITIONAL 
𝛽 -PLANE APPROXIMATION 

linearized equation for 𝑢𝑥

linearized equation for magnetic field, 
density and divergence-free condition 
for velocity

Background state:

𝑢0 = 0,𝐵0 = 𝑐𝑜𝑛𝑠𝑡,
𝜕𝑃0

𝜕𝑧
= − ҧ𝜌(𝑧), ҧ𝜌 𝑧 = 𝑁2𝑧

෦𝜌0

𝑔

𝑁2 − Brunt–Väisälä frequency

𝜌′ =
𝜌𝑔

෦𝜌0
,  𝑃 =

𝑝

෦𝜌0
,  𝐵 =

𝑏

4𝜋෦𝜌0

In 𝛽-plane approximation we suppose that Coriolis 

parameter Ԧ𝑓 = 2Ω varies slightly with small latitude variations

traditional non-traditional

Ԧ𝑓 = 0,0, 𝑓𝑉′ ,
𝑓𝑉′ = 2Ω sin 𝜃0 + 2Ω cos 𝜃0 𝜃 − 𝜃0 𝑅 =

= 𝑓𝑉 + 𝛽𝑦

Ԧ𝑓 = 0, 𝑓𝐻′, 𝑓𝑉′ ,
𝑓𝑉′ = 𝑓𝑉 + 𝛽𝑦,

𝑓𝐻′ = 2Ω cos 𝜃0 − 2Ω sin 𝜃0 𝜃 − 𝜃0 𝑅 =
= 𝑓𝐻 + 𝛾𝑦

taking into account the horizontal component of theCoriolis force

𝜕2𝑢𝑥
𝜕𝑦𝜕𝑡

− 𝑓𝑉
𝜕𝑢𝑦

𝜕𝑦
− 𝛽𝑢𝑦 + 𝑓𝐻

𝜕𝑢𝑧
𝜕𝑦

− 𝛾𝑢𝑧 +
𝜕2𝑃

𝜕𝑦𝜕𝑥
+

𝜕

𝜕𝑦
𝐵𝑦

𝜕𝐵𝑦

𝜕𝑥
+ 𝐵𝑧

𝜕𝐵𝑧
𝜕𝑥

− 𝐵𝑦
𝜕𝐵𝑥
𝜕𝑦

− 𝐵𝑧
𝜕𝐵𝑥
𝜕𝑧

= 0,

𝜕𝑢𝑦

𝜕𝑡
+ 𝑓𝑉𝑢𝑥 +

𝜕𝑃

𝜕𝑦
+ 𝐵𝑥

𝜕𝐵𝑥
𝜕𝑦

+ 𝐵𝑧
𝜕𝐵𝑧
𝜕𝑦

− 𝐵𝑥
𝜕𝐵𝑦

𝜕𝑥
− 𝐵𝑧

𝜕𝐵𝑦

𝜕𝑧
= 0,

𝜕𝑢𝑧
𝜕𝑡

− 𝑓𝐻𝑢𝑥 +
𝜕𝑃

𝜕𝑧
+ 𝜌′ + 𝐵𝑥

𝜕𝐵𝑥
𝜕𝑥

+ 𝐵𝑦
𝜕𝐵𝑦

𝜕𝑧
− 𝐵𝑥

𝜕𝐵𝑧
𝜕𝑥

− 𝐵𝑦
𝜕𝐵𝑧
𝜕𝑦

= 0,

𝜕𝐵

𝜕𝑡
− 𝐵0𝛻 𝑢 = 0,

𝜕𝜌′

𝜕𝑡
+ 𝑁2𝑢𝑧 = 0, div 𝑢 = 0.

linearized equation for 𝑢𝑦

linearized equation for 𝑢𝑧
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SOLUTIONS OF DISPERSION EQUATION ON 
TRADITIONAL 𝛽 -PLANE

𝑘2𝜔4 + 𝛽𝑘𝑥𝜔
3 − 𝜔2 𝑓𝑉

2𝑘𝑧
2 −𝑁2𝑘ℎ

2 + 2𝑘2 𝐵0 ⋅ 𝑘
2 − 𝛽𝑘𝑥𝜔 𝐵0 ⋅ 𝑘

2 − 𝑁2 + 𝐵0 ⋅ 𝑘
2 𝑘2 𝐵0 ⋅ 𝑘

2 − 𝑁2𝑘ℎ
2 = 0, 𝒌𝒉 = (𝑘𝑥, 𝑘𝑦 , 0) (9)

𝑩𝟎 = 𝟎

𝑘𝑧 ≪ 𝒌 In the case of waves propagation in horizontal plane (𝑘𝑥 , 𝑘𝑦) dispersion equation (9) has solutions in form

of magneto-Rossby waves (10), (11) and magnetic gravity wave

In the case of waves propagation along the vertical component of wave vector dispersion equation (9)
describes vertical magnetic waves 𝜔𝑧1(2), 𝜔𝑧2(4)

𝜔𝑚𝑟1 = −
𝛽𝑘𝑥

2𝑘ℎ
2 +

1

2

𝛽2𝑘𝑥
2

𝑘ℎ
4 + 4 𝐵0 ⋅ 𝑘

2 (10) 𝜔𝑚𝑔𝑟 = ± 𝐵0 ∙ 𝑘 ℎ
2 − 𝑁2 𝜔𝑚𝑟2 = −

𝛽𝑘𝑥

2𝑘ℎ
2 −

1

2

𝛽2𝑘𝑥
2

𝑘ℎ
4 + 4 𝐵0 ⋅ 𝑘

2 (11)

𝜔𝑅 = −
𝛽𝑘𝑥

𝑘ℎ
2

𝑩𝟎 = 𝟎has no analogue
in neutral fluid
dynamics

𝒌𝒉 = 𝑘𝑦 𝒌𝒉 = 𝑘𝑦

𝜔𝑎𝑦 = ±𝐵0𝑦𝑘𝑦

In low-frequency limit dispersion equation

(9) has solution in form of three-
dimensional magneto-Rossby wave (12)

new 𝝎𝑴𝑹𝟑𝑫 ≈
𝑩𝟎⋅𝒌

𝟐 𝒌𝟐 𝑩𝟎⋅𝒌
𝟐−𝑵𝟐

𝜷𝒌𝒙 𝑩𝟎⋅𝒌
𝟐−𝑵𝟐

(12) 𝑩𝟎 = 𝟎

𝜔𝑅3𝐷 ≈
𝑁2𝛽𝑘𝑥

𝑓𝑣
2𝑘𝑧

2 − 𝑁2𝑘ℎ
2

𝑘𝑧 ≪ 𝒌

In the case of waves propagation in horizontal
plane (𝑘𝑥 , 𝑘𝑦) dispersion relation (12) has a form

of dispersion relation for magneto-Rossby wave
in shallow water approximation (13)

𝝎𝑴𝑹𝑺𝑾 ≈
𝒌𝒉
𝟐 𝑩𝟎⋅𝒌 𝒉

𝟐

𝜷𝒌𝒙
(13)

𝜔𝑅 = −
𝛽𝑘𝑥

𝑘ℎ
2

𝑘𝑧 ≪ 𝒌

𝒌 = 𝑘𝑧
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SOLUTIONS OF DISPERSION EQUATION ON 
NON-TRADITIONAL 𝛽 -PLANE

𝑘2𝜔4 + 𝑘𝑥𝜔
3 𝛽 − 𝛾

𝑘𝑧
𝑘𝑦

− 𝜔2 𝑓𝐻𝑘𝑦 + 𝑓𝑣𝑘𝑧
2
− 𝑁2𝑘ℎ

2 + 2𝑘2 𝐵0 ⋅ 𝑘
2 − 𝑘𝑥𝜔 𝐵0 ⋅ 𝑘

2 𝛽 − 𝛾
𝑘𝑧
𝑘𝑦

− 𝛽𝑁2 +

+ 𝐵0 ⋅ 𝑘
2 𝑘2 𝐵0 ⋅ 𝑘

2 − 𝑁2𝑘ℎ
2 = 0, 𝒌𝒉= (𝑘𝑥 , 𝑘𝑦 , 0) (14)

𝒌 = 𝑘𝑥
In the case of waves propagation along the 𝑥-component of wave vector dispersion equation (14) has solutions
in form of magneto-Rossby waves (10), (11)

In the case of waves propagation along the vertical component of wave vector dispersion equation (14) describes vertical
magnetic waves 𝜔𝑧1(2), 𝜔𝑧2(4)

In low-frequency limit dispersion equation

(14) has solution in form of three-
dimensional magneto-Rossby wave (17)

new 𝝎𝑴𝑹′𝟑𝑫 ≈
𝑩𝟎⋅𝒌

𝟐 𝒌𝟐 𝑩𝟎⋅𝒌
𝟐−𝑵𝟐𝒌𝒉

𝟐

𝒌𝒙 𝑩𝟎⋅𝒌
𝟐 𝜷−𝜸

𝒌𝒛
𝒌𝒚

−𝜷𝑵𝟐
(17) 𝑩𝟎 = 𝟎

𝑘𝑧 ≪ 𝒌

In the case of waves propagation in horizontal
plane (𝑘𝑥 , 𝑘𝑦) dispersion relation (17) has a form

of dispersion relation for magneto-Rossby wave
in shallow water approximation (13)

𝝎𝑴𝑹𝑺𝑾 ≈
𝒌𝒉
𝟐 𝑩𝟎⋅𝒌 𝒉

𝟐

𝜷𝒌𝒙
(13)

𝜔𝑅 = −
𝛽𝑘𝑥

𝑘ℎ
2

𝑘𝑧 ≪ 𝒌

𝒌 = 𝑘𝑦

In the case of waves propagation along the 𝑦-component of
wave vector dispersion equation (14) has solutions in form of
one dimensional magnetic inertio-gravity wave (15) and
one-dimensional magnetostrophic wave (16)𝜔𝑚𝑠𝑡𝑟𝑦 = ± (1/2) 𝑓𝐻

2/2 − 𝑁2/2 + 𝐵𝑦
2𝑘𝑦

2 − 𝑓𝐻
2/2 − 𝑁2/2 2 + 𝑓𝐻

2𝐵𝑦
2𝑘𝑦

2 (16)

𝜔𝑚𝑖𝑔𝑦 = ± (1/2) 𝑓𝐻
2/2 − 𝑁2/2 + 𝐵𝑦

2𝑘𝑦
2 + 𝑓𝐻

2/2 − 𝑁2/2 2 + 𝑓𝐻
2𝐵𝑦

2𝑘𝑦
2 (15)

𝒌 = 𝑘𝑧

𝜔𝑅′3𝐷 ≈
𝑁2𝛽𝑘𝑥

𝑓𝐻𝑘𝑦 + 𝑓𝑣𝑘𝑧
2
−𝑁2𝑘ℎ

2
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PHASE MATCHING CONDITION
𝜔1 𝒌1 + 𝜔2 𝒌2 = 𝜔3 𝒌3 , 𝒌1 + 𝒌2 = 𝒌3

The intersection of dispersion curves 

shifted from each other is an 

indicator of the satisfaction of the 
phase matching condition

1: 𝜔𝑚𝑔𝑟 , 2: 𝜔𝑎 + 𝜔𝑚𝑔𝑟 1: 𝜔𝑧1 , 2: 𝜔𝑧2 + 𝜔𝑧1 1: 𝜔𝑧2 , 2: 𝜔𝑧2 + 𝜔𝑧2

1: 𝜔𝑚𝑖𝑔′, 2: 𝜔𝑚𝑠𝑡𝑟′ + 𝜔𝑚𝑠𝑡𝑟′

1: 𝜔𝑚𝑟1 , 2: 𝜔𝑚𝑔𝑟 + 𝜔𝑚𝑟1 1: 𝜔𝑚𝑔𝑟 , 2: 𝜔𝑚𝑟1 + 𝜔𝑚𝑔𝑟 1:𝜔𝑚𝑟1 , 2: 𝜔𝑚𝑟1 + 𝜔𝑚𝑟1

𝒇-
plane

non-

trad.

𝒇-
plane

𝜷-
plane

non-trad. 𝜷-plane

1: 𝜔𝑚𝑖𝑔′, 2: 𝜔𝑚𝑠𝑡𝑟′ + 𝜔𝑚𝑖𝑔′ 1: 𝜔𝑚𝑖𝑔′, 2: 𝜔𝑚𝑠𝑡𝑟′ + 𝜔𝑚𝑖𝑔′
1:𝜔𝑀𝑅3𝐷

′ , 2: 𝜔𝑀𝑅3𝐷
′ + 𝜔𝑀𝑅3𝐷

′ , 𝑘 = 𝑘𝑥;

3:𝜔𝑀𝑅3𝐷
′ , 4: 𝜔𝑀𝑅3𝐷

′ + 𝜔𝑀𝑅3𝐷
′ , 𝑘 = 𝑘𝑦;

5: 𝜔𝑀𝑅3𝐷
′ , 6: 𝜔𝑀𝑅3𝐷

′ + 𝜔𝑀𝑅3𝐷
′ , 𝑘 = 𝑘𝑧;
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MULTISCALE ASYMPTOTIC METHOD

Let us present the solution of the MHD Boussinesq equations in form of an asymptotic series in small 
parameter ε

𝒒 = 𝒒𝟎 + 𝜺𝒒𝟏 + 𝜺𝟐𝒒𝟐 +⋯ 𝑞0 - stationary solution, 𝑞1 - linear solution, 𝑞2 - quadratic nonlinear effect

The equations that govern correction due to nonlinear effect can be obtained in the
second-order approximation in parameter ε. The right-hand side of this equation

contains resonance terms that lead to linear growth of the solution and violation of
𝜀2𝑞2 ≪ 𝜀𝑞1 on a large scale

To avoid this, we introduce a slowly-varying amplitude that depends on slow time (𝑇1) and large space 
scales (𝑋1, 𝑌1, 𝑍1)

𝒒 𝑻𝟏, 𝑿𝟏, 𝒀𝟏, 𝒁𝟏 𝒆𝒊 𝝎𝑻𝟎−𝒌𝒙𝑿𝟎−𝒌𝒚𝒀𝟎−𝒌𝒛𝒁𝟎

𝜕

𝜕𝑡
=

𝜕

𝜕𝑇0
+ 𝜀

𝜕

𝜕𝑇1
; 
𝜕

𝜕𝑥
=

𝜕

𝜕𝑋0
+ 𝜀

𝜕

𝜕𝑋1
; 
𝜕

𝜕𝑦
=

𝜕

𝜕𝑌0
+ 𝜀

𝜕

𝜕𝑌1
;
𝜕

𝜕𝑧
=

𝜕

𝜕𝑍0
+ 𝜀

𝜕

𝜕𝑍1

𝑇0, 𝑋0, 𝑌0 - “fast’’ variables 𝑇1, 𝑋1, 𝑌1 - “slow’’ variables
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COMPATIBILITY CONDITION

By means of our new form of solution we obtain system in the second-order approximation in 
parameter ε in following form

𝑨(𝑻𝟎, 𝑿𝟎, 𝒀𝟎, 𝒁𝟎)𝒒𝟐 = −𝑭(𝑻𝟏, 𝑿𝟏, 𝒀𝟏, 𝒁𝟏)𝒒𝟏 − 𝑮(𝑻𝟎, 𝑿𝟎, 𝒀𝟎, 𝒁𝟎)(𝒒𝟏, 𝒒𝟏)

orthogonality of the right hand side

Ԧ𝑧𝐴 = 0 ⇒ −Ԧ𝑧𝐹𝑞1 − Ԧ𝑧𝐺(𝑞1, 𝑞1) = 0

Ԧ𝑧 - eiegenvector for A

Now we can eliminate the resonant terms in the right-hand side using compatibility condition:

to the kernel of a linear operator on the left-hand side

Multiplying the system by eigenvector of linear operator, we obtain the system in following form
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EQUATIONS FOR AMPLITUDES OF THREE 
INTERACTING WAVES

We introduce he solution in form of a sum of three interacting waves, satisfying phase matching condition

𝒒𝟏 = 𝝓𝒂 𝒌𝟏 𝒆𝒊𝝑𝟏 +𝝍𝒂 𝒌𝟐 𝒆𝒊𝝑𝟐 + 𝝌𝒂 𝒌𝟑 𝒆𝒊𝝑𝟑 + 𝒄. 𝒄.

Writing out successively terms proportional to 𝒆𝒊𝝑𝟏, 𝒆𝒊𝝑𝟐, and 𝒆𝒊𝝑𝟑, we obtain a system of equations that
govern three amplitudes of interacting packets of waves in the Boussinesq approximation:

𝑠𝑖 = 𝑟𝑖
𝜕

𝜕𝑇1
+ 𝑝𝑖

𝜕

𝜕𝑋1
+ 𝑞𝑖

𝜕

𝜕𝑌1
+ 𝑤𝑖

𝜕

𝜕𝑍1
ቐ

𝑠1𝜙 = 𝑓1𝜓
∗𝜒 ,

𝑠2𝜓 = 𝑓2𝜙
∗𝜒 ,

𝑠3𝜒 = 𝑓3𝜙𝜓 .
differential operator with respect to 

the “slow” arguments

Coefficients 𝑓𝑖depend only on the

initial conditions and characteristics
of interacting waves.

Significant differences between the obtained amplitude equations for

different Coloriolis approximations and different waves interactions are
contained in differential operators 𝑠𝑖 and coefficients 𝑓𝑖

13/15



PARAMETRIC INSTABILITIES

The system of amplitude equations for three interacting waves is universal system for describing

parametric instabilities. Thus we have two types of parametric instabilities in magnetohydrodynamic
flows of stratified rotating plasma in Boussinesq approximation for all Coriolis parameter approximations

decay of wave 𝝎𝟏( 𝒌𝟏)
into two waves 𝝎𝟐(𝒌𝟐) and 𝝎𝟑(𝒌𝟑)

with instability increment

𝜞 =
𝒇𝟐𝒇𝟑
𝒓𝟐𝒓𝟑

𝝓𝟎 > 𝟎

𝝓 = 𝝓𝟎 ≫ 𝝍,𝝌

First type realizes when one 

amplitude is large compared 

with another two at the initial 
moment

amplification of wave 𝝎𝟏( 𝒌𝟏)
by two waves 𝝎𝟐(𝒌𝟐) and 𝝎𝟑(𝒌𝟑)

with instability increment

𝜞 =
𝒇𝟏
𝒓𝟏

𝝍𝟎𝝌𝟎 > 𝟎

𝝓 ≪ 𝝍 = 𝝍𝟎, 𝝌 = 𝝌𝟎

Second type realizes when 

one amplitude is small 

compared with another two 
at the initial moment

14/15



CONCLUSION

• Linearized magnetohydrodynamic equations in Boussinesq approximation for rotating

stratified layer of plasma with linear density profile are solved in four cases of Coriolis

parameter approximation

• Linear solutions are obtained in form of waves govern by buoyancy, Coriolis and Lorentz
forces

 Three-dimensional magnetic inertio-gravity and magnetostrophic waves

 Low-frequency magneto-Rossby waves

• By means of non-traditional approximations influence of horizontal component of Coriolis

parameter is studied in conjunction with effects of stratification

• Dispersion curves of all obtained wave types are studied to satisfy phase matching
condition

• Equations for amplitudes of three interacting waves are obtained by means of multiscale

asymptotic method for all identified types of interactions. Parametric instabilities are
studied and their increments are found.

15/15



M. A. Fedotova, A. S. Petrosyan, Waves processes in three-

dimensional stratified flows of rotating plasma in Boussinesq
approximation, JETP, accepted in print (2020)

FOR MORE DETAILS


