NIPPON KOEI

🛞 日本工営株式会社

ESM-projected global change in indices of extreme precipitation using the TR3S method of bias-correction

1. PROBLEM STATEMENT

Design Parameters (Experiments,	Climate	Revised Parameters (Change in Extreme Weather)
Observation, Experience)	Change	

• Source of future climate: ESMs (BC is needed)

MOS bias-correction methods:

1.Non-parametric distribution

Preserve the modeled trends in all quantiles

$$\begin{split} T_{95}^F &= T_{95}^{O,C} + (T_{95}^{M,F} - T_{95}^{M,C}) \\ P_{95}^F &= P_{95}^{O,C} \cdot (P_{95}^{M,F} / P_{95}^{M,C}) \end{split}$$

- Effect of variability
- The mean's trend is not preserved

2.Parametric distribution (Gauss for T, Gamma for P)

- ✤ Do not always fit the observed and ESM data
- Haerter et al. 2011: The Role of Timescales
 - "...existing approaches ... do not take into account that oscillations on different timescales are caused by disparate physical mechanisms".

Do we need to correct the ESMsimulated change in the extremes?

3. ABOUT THE NEW METHOD

- Gomez-Garcia et al. (2019) Time Scale Decomposition of Climate and Correction of Variability Using Synthetic Samples of Stable Distributions. *Water Resources Research*, 55, 3632– 3658.
- Preserves the mean's trend and the ESM-changes in other distributional properties.
- Does not transfer the calibration period variability.
- Corrects the annual variability as well.
- Stable Distributions fit well samples of anomalies of T and log(P), which eventually would make simpler a multivariate correction framework.
- Allows to document and make intra-model comparisons of the biases in the frequency of extremes, skewness and scale at monthly and daily scales.
- Allows to document the future change in the frequency of extremes, skewness and scale at monthly and daily scales for each model.
- Can be eventually extended to the hourly scale.

2. THE TR3S "BIAS-CORRECTION" METHOD

- Fitting Data with Parametric Distributions
 - Stable Distributions: the PDF and the CDF are function of 4 parameters (tail heaviness, symmetry, scale and loc).
 - ✓ Changes to the tail heaviness, symmetry or scale do not affect the location, which is equal to the expected value.

• Preserving the Change in the Distributions of ESM-data

- $\checkmark~$ 3 quantile measures: frequency of extremes, skewness and scale
- Not transferring the variability of the calibration period to the corrected data

4. INTERACTIVE ONLINE MAPS OF ESM-PROJECTED WEATHER EXTREMES

Link: https://nk-climvault.com/

- Atlas of extreme weather indices (corrected using the TR3S method)
- Download timeseries of cities with 500,000+ pop.
- Still beta version (learning HTML and javascript as I go)
- Version 1.0 with 30+ CMIP5 models
- Version 2.0 adding CMIP6