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Objective of solar wind classification

Reasons to use classification of the 
instantaneous solar wind

• Statistical characterisation of different 
plasma flows

• Study fluctuations in the plasma 
properties depending on the solar cycle

• Diagnose physical processes in the Sun 
based on the observations of plasma at 
1AU

Xu, F., & Borovsky, J. E. (2015). JGR: Space Physics
Richardson, I. G., & Cane, H. V. (2012). JSWSC
Zastenker, G. N., et al. (2014). Cosmic Research
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At the beginning basic solar wind 
properties were used to separate 
different classes: speed, magnetic 
field components, density.

Initially the wind was classified as 
“fast” and “slow”.

This basic classification mainly detects 
the occurrence of coronal holes

More advance algebraic empirical 
rules have been developed over time.

How to classify the solar wind

Arya, S., & Freeman, J. W. (1991). JGR: Space Physics, 96
Feldman, U., Landi, E., & Schwadron, N. A. (2005).JGR: Space Physics, 110
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• Three/Four category-based classification on 
wind origin [Zhao, 2009] [Xu & Borovsky, 
2015]

• Xu classification is based on complex plasma 
properties, in particular heavy ion content

• Measurement of heavy ions: not available in 
all missions

• Properties based on moments used by Xu & 
Borovsky

– Proton Specific Entropy

– Expected temperature ratio

– Alfvén speed

Advanced algebraic rules

Zhao, L., Zurbuchen, T. H., & Fisk, L. A. (2009). GRL, 36
Xu, F., & Borovsky, J. E. (2015). JGR: Space Physics
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A new apporach: probabilistic 
classification and machine learning

• Re-analysis of algebraic laws using 
Gaussian Process to include uncertainties

• Transformation of classification rules into 
probabilistic rules

• Allowing for ‘undefined’ classifications

• Better suited for forecasting and 
operational tools

• Input: OMNI data

• Output: Four-class probabilities 

Probabilistic classification

Gaussian 
Process

Camporeale, E., Carè, A., & Borovsky, J. E. (2017). JGR: Space Physics, 122
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• There are limitations with the 
supervised methods: 
unavailable labelled data and 
small number of data points

• We use unsupervised 
techniques to uncover 
hidden information

• Unsupervised learning is based 
on data, not on human 
perception

Machine Learning alternative methods
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Self-Organizing Maps (SOM)

Kohonen, T. (1982). Biological cybernetics, 43(1), 59-69.
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• SOM is a clustering technique

• It is classified as unsupervised learning: there is no “labeled” data

• In clustering we try to find a few points that represent groups of points in a N-
dimensional space

• Other clustering methods include: k-means, GMM, DBCAN, agglomerative 
methods, etc.

• The difference of SOM is that in addition to cluster, the Maps of the SOM 
contain topological information

• Neighbor nodes in the SOM are also neighbors in the N-dimensional space

• We can then discover patterns in the groups of data by visual inspection
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Self-Organizing Maps (SOM) general overview

Kohonen, T. (1982). Biological cybernetics, 43(1), 59-69.
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Self-Organizing Maps (SOM)

Kohonen, T. (1982). Biological cybernetics, 43(1), 59-69.
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The goal and advantages of Self-Organazing Maps (SOM):

● Reduce the data: project N-dimensional points onto a 2D map
● Group the data: cluster data points around representative nodes
● Visualize and understand the data: maintaining topology information on the 

reduced space of the map
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• Random initialization of ‘representative nodes’ in the features space

• The nodes belong to a ‘map’

SOM: how they learn?

Feature ND-space SOM
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• For each point: find the Best Matching Unit (BMU)

• Find the closest nodes to the BMU

SOM: how they learn?

Feature ND-space SOM
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Feature ND-space SOM

SOM: how they learn?

• Move nodes depending on their distance to the BMU

• Closer map nodes move faster
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Feature ND-space SOM

SOM: how they learn?

• The next data point will activate a different BMU

• Follow the same procedure as before
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Feature ND-space SOM

SOM: how they learn?

• Moving the nodes at different speeds allows to cover the ND-space, 
maintaining the similarity between neighbour map nodes.
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Feature ND-space SOM

SOM: how they learn?

• Multiple epochs (full data iterations) allows the map to cover the full ND-space 
with nodes representing particularly dense regions, and maintaining similarity 
among neighbour nodes.
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step 2

SOM example: random list of RGB colors
 RGB(0.2, 0.5, 0.77) = 
 6000 points randomly distributed around three selected colors.
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 ACE data from 1998 to 2011:
 72K points with 17 features and derived properties

Using SOM on solar wind data
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 We can transform the data into a more “useful” space.
 Two possible methods: PCA and Autoencoders

Data transformation: using better data
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Enhanced 
Derived Data

Data
Normalization

Read ACE
Data

Transformation

ACE data pre-processing pipeline
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Clouds of points: dimenision reduction
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Xu Classification

Zhao Classification

PCA AE

Zhao, L., Zurbuchen, T. H., & Fisk, L. A. (2009). GRL, 36
Xu, F., & Borovsky, J. E. (2015). JGR: Space Physics
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Hyper-parameters (automatically optimized)

We used bayesian optimization to determine automatically the following 
parameters:

 Map size: 12 x 12
 Learning rate: 0.13
 Elasticity: 4.42

The  values bellow were set-up manually:
 20000 epochs
 17 features
 Compression bottleneck: 3
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The maps: some examples of visualization
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The maps: feature space and map nodes
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Data space and “code words”: histogram of all solar 
wind points projected on the first two components of the 
transformed (compressed, reduced, latent) space. 
Distribution of the SOM nodes among all the solar wind 
points.

Hit map: each map “node” corresponds to a 
“code word” in the data space.  The size of the 
node represents the number of solar wind 
points that belong to the node. The color 
represents the SOM class automatically 
detected. The thickness of the black lines 
represent the relative distance between 
neighbouring nodes.
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The maps: some examples of visualization
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Feature map: The three coordinates (components) of 
each nodes in the map, normalized between 0 and 1.
If the three are combined we can use RGB colors to 
plot the “feature map”, or each component can be 
traced independently. Continuous black lines show the 
boundaries between SOM classes.
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The maps: some examples of visualization
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Sub set data and alternative visualizations: once trained, we can pass sub 
sets of the data to study. In this example we select the solar wind of type 2 
from Xu. This sub set activates certain nodes only. We then color by the 
property ‘avqO’ (average oxygen charge).

Notice that none of these values was used for the training! We can then 
visually identify class activations and their physical properties. 

Properties map: if we de-code the components 
we can obtain the original solar wind features, 
and plot each one of them.

Each node is then characterized by a particular 
set of solar wind properties

Xu, F., & Borovsky, J. E. (2015). JGR: Space Physics
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Node clustering
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SOM classes: using k-means we cluster the 
nodes to obtain 8 different classes.

The number of classes has been given, but 
automatic techniques exist to make a selection of 
the correct number.

Notice that each class is contiguous in the map, 
and that node distances give a good indication of 
the boundaries.
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Feature maps
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Time series
Window of 4 months were the classified data is plotted, including the solar wind speed, the IMF polarity 
and the O7+/O6+ ratio. This last one contains the limits of the Zhao classification for ICME (dots inside 
the red zone), coronal hole (dots above the red zone) and non-coronal hole origins (dots bellow the red 
zone). ICME and shock manual catalogues are used in the top panel to compare with SOM classes.

Zhao, L., Zurbuchen, T. H., & Fisk, L. A. (2009). GRL, 36
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Comparison with Xu classification
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• Automatic selection of the number of classes

• Precisse analysis of each one of the detected classes

• Verification on multiple time series

• Precise comparison with different classification methods

• Publication of a physical interpretation of each one of the classes automatically 
detected using the procedure presented here.

• Application of the SOM technique to other heliophysics data.
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On the works
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