## NERC SCIENCE OF THE ENVIRONMENT CENTA

# Finding a Pulse: Melt Formation and Timing in the Garhwal Himalaya

Charlie Oldman<sup>1</sup>, Clare Warren<sup>1</sup>, Christopher Spencer<sup>2</sup>, Tom Argles<sup>1</sup>, Nigel Harris<sup>1</sup>, and Sam Hammond<sup>1</sup>

Contact author: Charlie Oldman (charlie.oldman@open.ac.uk)

<sup>1</sup> The Open University, Milton Keynes (UK)

The Open Jniversity

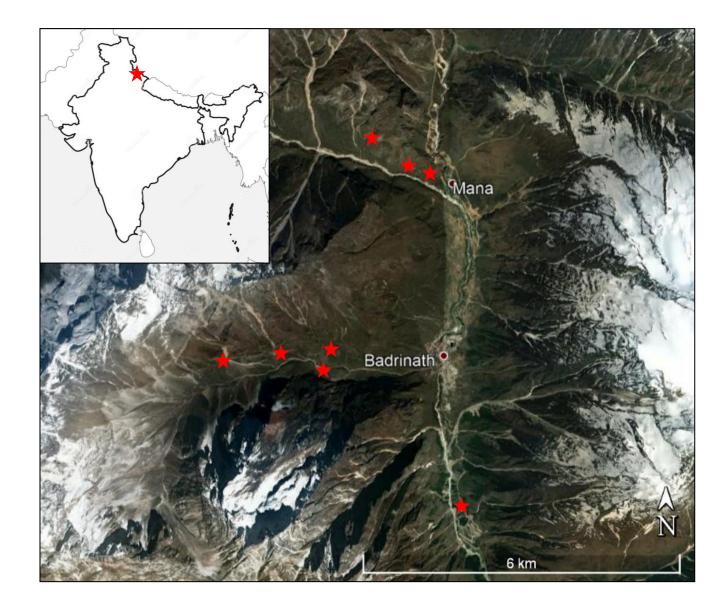
<sup>2</sup> Queen's University, Kingston (Canada)



#### Motivation for this study

- Partial melting of metapelitic rocks has occurred throughout the high-structural levels of the Himalayan orogen
- The presence of melt impairs local mechanical strength and may be the driving force behind the mid- to deep-crustal exhumation
- Analysis of mineral chemistry in structurally related rocks of various melt fraction, we can gain a better understanding of this process
- In this study, we use a suite of geochemical signatures in zircon from leucogranites, migmatites, and host metapelites to inform us of specific interactions occurring at the time of crystallisation

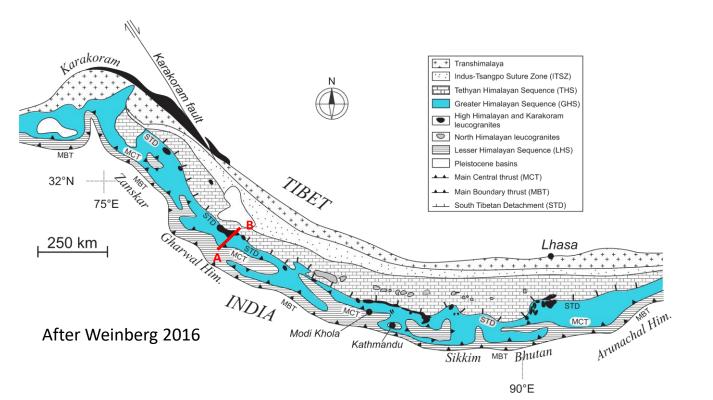



A typical garnettourmaline leucogranite

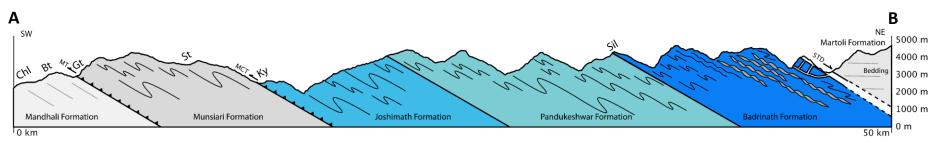




#### Sampling


- Leucogranites, migmatites, and host metasediments were collected as part of this study
- Sampling locations (marked in red) were mostly contained to the Rishi Ganga (Badrinath) and Alaknanda (Mana) valleys in the Garhwal region of the Indian Himalaya



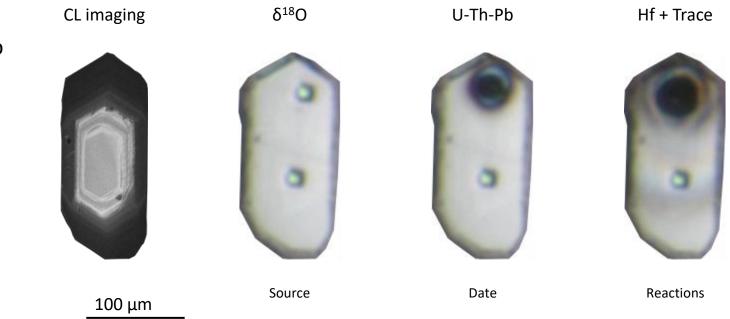



#### Geology of the Garhwal

- Valleys sampled are part of the Greater Himalayan Sequence (GHS) of crystalline metamorphic rocks, marked in blue, found right across the orogen
- Line A-B transects the GHS and is shown in cross-section below
- Extent of migmatization is greatest towards the north-east, with larger granitic bodies below the South Tibetan Detachment (STD)

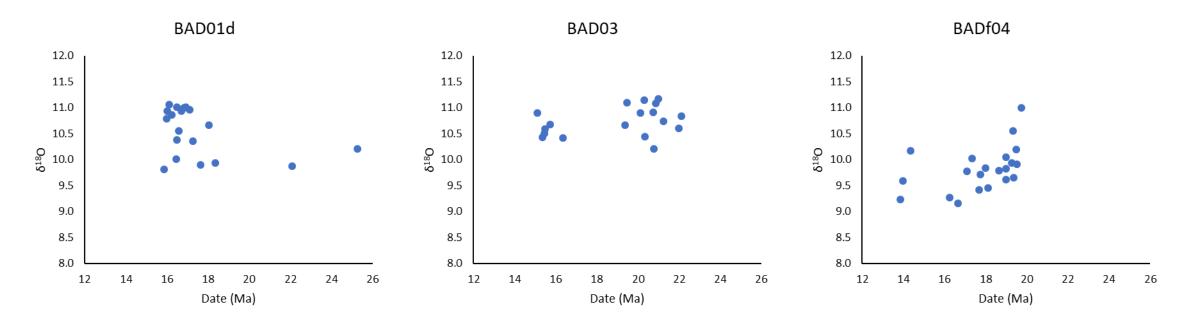


Sampling targeted the Badrinath
Formation





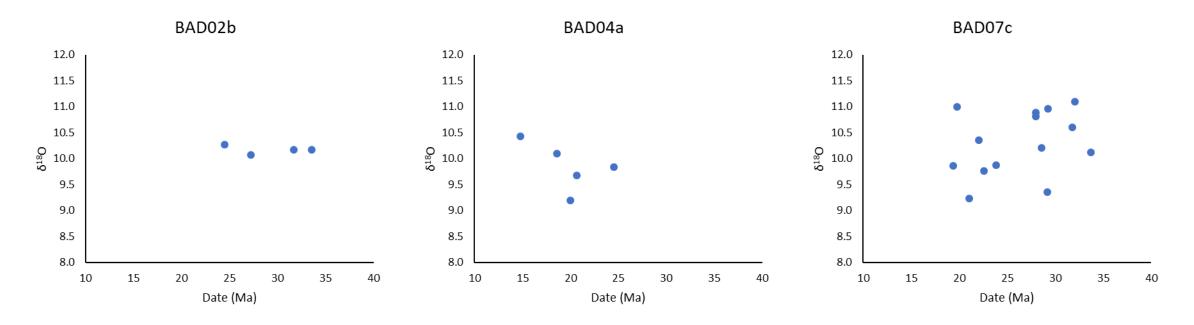

Spencer et al., 2012


#### Analysis

- Analytical spots targeted the dark (high-U) outer growth rings typical of Himalayan-aged zircon
- Oxygen isotope ratio ( $\delta^{18}$ O), analysed with SIMS, is unaltered by anatexis and is inherited from the source rock
  - Measured at the Guangzhou Institute of Geochemistry
- U-Th-Pb analysis, using LA-ICP-MS, dates the crystallisation event
  - Measured at Curtin University
- Hf isotopic and trace element analysis (LA-ICP-MS) allow for the U-Pb dates to be linked to geological processes
  - Measured at Curtin University





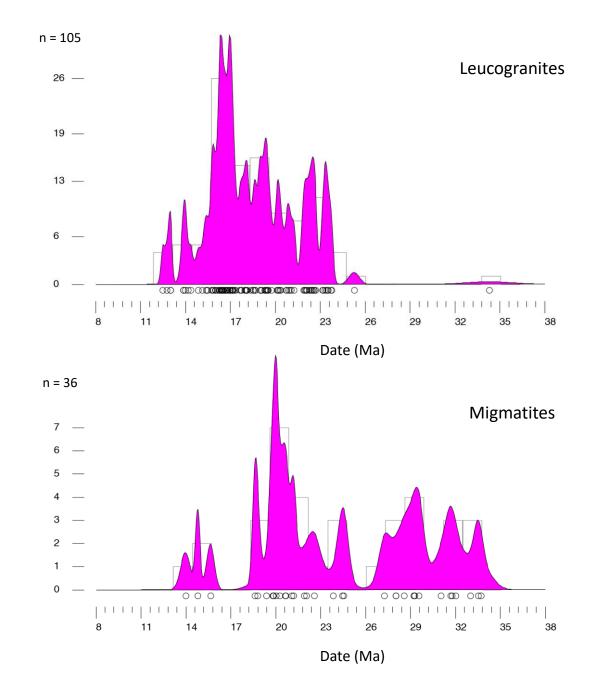

#### Leucogranite Date vs $\delta^{18} O$



- Here is a subset of leucogranites analysed, with date plotted against  $\delta^{18}O$
- $\delta^{18}$ O varies by up to 2‰, which suggests a high degree of heterogeneity in the early melt
- All spot analyses fall within the expected  $\delta^{18}$ O range of sedimentary origin
- Samples show periods of both continuous and punctuated zircon crystallisation



#### Migmatites Date vs $\delta^{18}\text{O}$




- Here is a subset of migmatites analysed, with date plotted against  $\delta^{18}O$
- For many migmatites samples the extent of new zircon growth is low, resulting in a reduced dataset
- Again, all δ<sup>18</sup>O values are within the sedimentary-derived range, with strong heterogeneity in both date and oxygen isotopes (BAD07c) or surprisingly homogeneity (BAD02b)
  - The later is likely due to the small sample size of zircons suitable for analysis



#### Probability Density Plots

- On the right are probability density plots of zircon U-Pb dates for both leucogranite and migmatite samples
- Leucogranite zircon crystallisation is concentrated between 12 and 24 Ma, with a prominent peak at 16.5 Ma
- Migmatite zircon dates can largely be split into two groups – those occurring before and those contemporaneous with the main body of leucogranite zircon
- Within this relative small area of the Himalaya, melt would have been present and repeatedly generated across a 20 Ma timespan





### Conclusions

- Leucogranites show a variety of zircon populations:
  - Younger dates with restricted  $\delta^{18}$ O, shifting  $\delta^{18}$ O ranges with increasing crystallisation, etc.
  - Continuous and punctuated episodes of crystallisation, with potentially varying sources
- Migmatite data is sparse, with huge variety between samples
  - Less zircon has crystallised in the migmatites than in the leucogranites, result skewed towards larger grains
- Zircon crystallisation events in leucogranites and migmatites are offset, with populations of migmatitehosted zircon crystallising before and during leucogranite formation

Future work

- Integrating Hf isotope and trace element data
- In-situ petrographic analysis (EPMA, LA-ICP-MS)
- Additional analysis of a monazite
  - Specifically in migmatites to supplement the current data

#### References

Spencer, C. J., Harris, R. A., and Dorais, M. J. (2012), The metamorphism and exhumation of the Himalayan metamorphic core, eastern Garhwal region, India, *Tectonics*, 31, TC1007, doi:10.1029/2010TC002853.

Weinberg, R.F. (2016), Himalayan leucogranites and migmatites: nature, timing and duration of anatexis. J. Metamorph. Geol., 34: 821-843. doi:10.1111/jmg.12204

