

Night-time vertical profiles of nitrate radical concentrations in urban environment (Paris, France)

Cirtog, Vincent Michoud, Axel Manuela Fouqueau, Mathieu Cazaunau, Antonin Bergé, Franck Maisonneuve, Pascal Zapf, Edouard Landsheere, Xavier Jerôme Pangui, Giacomoni, Matthieu Gobbi, Loïk Hanottel, Alain Paris, Nicolas Roulier, Paola Formenti, Abdelwahid Mellouki, Christopher Cantrell, Bénédicte Jean-François Doussin, and **Picquet-Varrault**

The nitrate radical

Simplified schematic of nocturnal NOy chemical processes, Benton et al., 2010

- NO₃ plays an important role in night-time chemistry
- Non-negligible impact on night-time polluted area and daytime chemistry in low sunlight conditions (*Geyer et al, 2003; Brown et al, 2005; Forkel et al, 2006*)
- NO₃-oxidation of VOCs produces large amount of organic nitrates (*eg. 50% of isoprene nitrates (Horowitz et al, 2007)*) and secondary organic aerosols (*Brown and Stutz, 2012*) → impact on the air quality and climate

The nitrate radical in urban environment

- NO₃ radical is important in the suburban area far from NOx sources
- Urban atmosphere is less favorable for NO₃ radical occurrence because of the presence of NO₃ sinks (specially NO)

 $NO_3 + NO \rightarrow 2 NO_2$ → Local consumption of NO_3 $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O_3 \rightarrow NO_3 + O_2$ → Slow formation of NO_3

 N_2O_5 losses on surfaces

But: What about vertically ?

- Atmospheric nitrogen chemistry near the earth surface is strongly linked to the dynamics of the boundary layer
- In summer, in altitude:
 - Levels of O₃ increase
 - Rapid conversion of NO in NO₂ (NO rapidly depleted by ozone)
 - NO₃ and N₂O₅ formation

Large variability of NO₃ mixing ratios as a function of height expected and NO₃ peak concentrations may exists (Brown et al., 2005)

What about verticaly ? Using « Ballon de Paris » to vertically explore the night-time urban atmosphere

Balloon de Paris Generali - high payload touristic tethered balloon located within the André Citroën park, on the banks of the Seine, in inner Paris.

What about verticaly ? Using « Ballon de Paris » to vertically explore the night-time urban atmosphere

Possibility to go up to 300 m high above Paris, far away from surfaces and NOx emissions \rightarrow Far away from NO₃ sinks

Objectives

✓ NO₃ vertical profils in Paris urban area
✓ Role of NO₃ radical chemistry above Paris

What about vertically ?

Using "Ballon de Paris" to vertically explore the night-time urban atmosphere

- Measurements during nights with clear whether conditions, no wind, high O₃ concentrations and low Relative Humidity (RH) : July 6, 7 and 13, 2018
- Vertical profiles up to a height of 150 m, and up to 300 m in very calm wind conditions:
 - 6 profiles up to 300 m
 - 6 profiles up to 150 m

Speed: 6 meters.min⁻¹ to 13 meters.min⁻¹

 Scientific equipment was installed every evening after the last tourist flight → time of installation ~1 hour

What about vertically ?

Using Ballon de Paris to vertically explore the night-time urban atmosphere

- The instruments deployed on board:
- ✓ IBBCEAS (Incoherent Broad Band Cavity Enhanced Absorption Spectroscopy) for the concentration measurement of the NO₃ radical (LISA)
- ✓ Mo Environnement SA analyzer for NOx measurement (LISA)
- \checkmark UV Environment SA absorption analyzer for O₃ measurement (LISA)
- ✓ CAPS Environnement SA analyzer for NO₂ measurement (ICARE)
- ✓ OPC GrimmTM for the measurement of particle number concentrations (LISA)
- $\checkmark\,$ RH probe and temperature

• Additional measurements at the ground:

O_{3,} NOx, Particle counter Meteo parameter (RH, P, T, Wind speed and direction), boundary layer height

LIDAR (boundary layer height)

MILEAGE station

The IBBCEAS instrument for NO₃ radical concentration measurements

Incoherent Broad Band Cavity Enhanced Absorption Spectroscopy technique

→ Broad band emission lamp (LED) centered on the strong absorption band of NO₃ at 662 nm and allowing detection of several gas absorbing in the emission region of the LED (NO₃, NO₂, H₂O)

→ Enhance of the optical path of the light in the cavity up to 4,5 km by 2 high reflective mirrors ($R(\lambda) = 99.98\%$)

 \rightarrow The absorption coefficient of the sample is determine as follows:

$$\alpha(\lambda) = [X]\sigma(\lambda) = \frac{1}{L}(\frac{I_0}{I} - 1)(1 - R)$$

 \rightarrow Quantification of absorbing species:

 $\alpha(\lambda) = [NO_3]\sigma_{NO3}(\lambda) + [NO_2]\sigma_{NO2}(\lambda) + [H_2O]\sigma_{H2O}(\lambda) + p(\lambda)$

Performances:

- Detection limit: up to 3 4 ppt/10 seconds
- High optical stability → easy and quick to install

Adapted from Ventrillard-Courtillot et al., 2010

 $\alpha(\lambda)$ = absorption coefficient of the sample in the cavity (cm⁻¹) L = effective length between the two mirrors of the cavity I, I₀ = the intensity of the light in the presence and absence of absorbing sample respectively

 $R(\lambda)$ = mirrors reflectivity

 $\sigma(\lambda)$ = cross section of the absorbing gaz n(cm².molecule⁻¹)

[X] = concentration (molecule. cm⁻³)

 $p(\lambda)$ = cubic polynomial to correct baseline deformations due to small LED intensity variations **EGU** General 2020

The IBBCEAS instrument for NO₃ radical concentration measurements – Balloon deployment

Characteristics:

- Calibration with an accurate known concentration of NO₂ (AirLiquide cylinder, 600 ppb) for reflectivity determination
- Protection of the mirrors to avoid reflectivity degradation:
 - N₂ flush on the mirror surfaces (50 sccm)
 - PTFE filter for particles on the sample line
- PFA coated cavity and line to minimize NO₃ wall losses

Balloon deployment

- ightarrow Installed every evening after the last tourist flight
- ightarrow Calibration at ground level every evening before measure
- \rightarrow I₀(λ) recorded at ground level and every 20 to 30 minutes during flights
- \rightarrow I(λ) recorded every minute

The IBBCEAS instrument for NO₃ radical concentration measurements

Technical characteristics:

Dimension = 1350 x 220 x 220 cm Weight = 30 kg

Vertical profiles of gas species **6/07/2018 22:48 - 23:37** Preliminary results

In altitude:

 \rightarrow NO₃ radical and N₂O₅ formation

- → Strong correlation between vertical profiles of [NO₃] radical and precursors [O₃] and [NO₂]
- \rightarrow [NO₃] radical maximal concentration at 200 m of altitude

Near ground level :

 \rightarrow Competition between sources and sinks of NO $_{\rm 3}$ (NO and surfaces)

 $NO_3 + NO \rightarrow 2 NO_2$ $N_2O_5 + H_2O \rightarrow HNO_3$ $NO + O_3 \rightarrow NO_2 + O_2$ $NO_2 + O_3 \rightarrow NO_3 + O_2$ → NO_3 radical in ppt range

Overview

- ✓ Successful deployment of an IBBCEAS instrument for NO₃ radical measurement on a tethered balloon possible due to the high optical stability of the instrument;
- ✓ First results show a vertical profile of NO₃ radical concentrations over Paris with a peak concentration at 200 m of altitude
- ✓ IBBCEAS data treatment still in progress:
 - loss corrections
- more precise treatment of the strong absorption by water vapor that spectrally overlaps with NO_3 absorption in the 662 nm region,
 - NO₂ cross section in the 655 665 nm region source of uncertainties

