Nutrient regeneration and benthic fluxes in the Coastal Baltic and North Sea

Kirstin Dähnke, Andreas Neumann, Tina Sanders

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Introduction and Background:

- Sediments in the coastal ocean can play an important role in nutrient regeneration, but this function, depends on physical characteristics, but also on biological traits like fauna composition and activity.
- In January 2017, water and sediment samples were taken on the Maria S. Merian cruise MSM 50 along a North Sea – Skagerrak – Baltic Sea gradient.
- Our goal was to evaluate benthic nutrient regeneration in the region.
- As a snapshot of the present situation, we analysed stable nitrate isotopes, and, to evaluate faunal effects, compared the benthic fluxes of DIN and O2 in the study region to a larger annual data set.

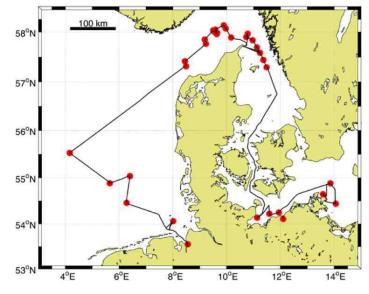
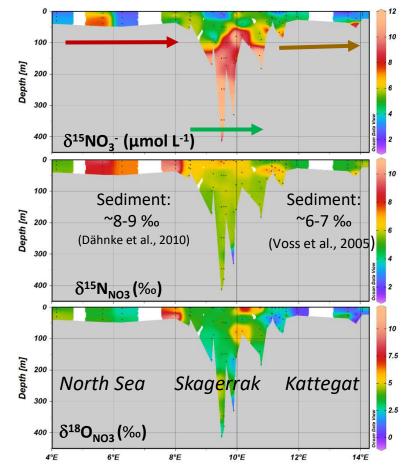


Fig. 1: Cruise track of the MSM 50 cruise. Source: U. Bathmann, Cruise Report MSM50, 2016


Nutrient regeneration and benthic fluxes in the Coastal Baltic and North Sea

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Kirstin Dähnke, Andreas Neumann, Tina Sanders

Nitrate and its stable isotopes along the cruise transect

- Nitrate stable isotope values follow sedimentary values indicative of remineralisation / nitrification
- This supported by low $\delta^{\rm 18}{\rm O}_{\rm NO3}$, especially in the Kattegat region

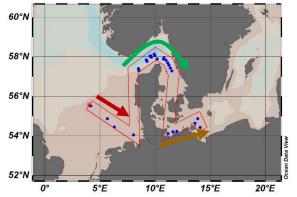
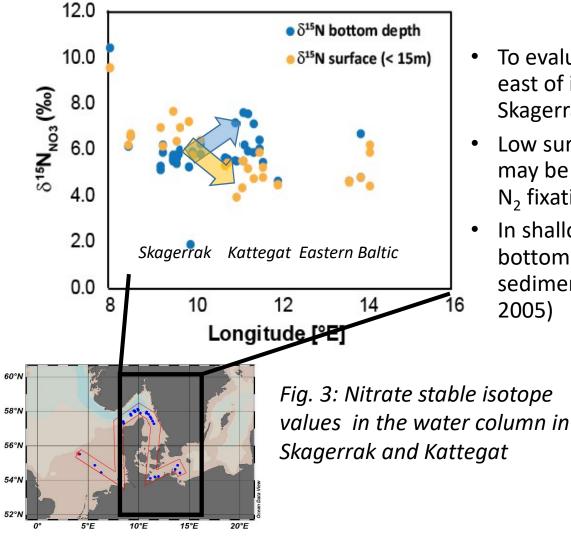


Fig. 2: Nitrate concentration and dual stable isotope values along a cruise transect. Note that changes in latitude are not visible in the transect, arrows are shown for reference.



Nutrient regeneration and benthic fluxes in the Coastal Baltic and North Sea Kirstin Dähnke, Andreas Neumann, Tina Sanders

Helmholtz-Zentrum Geesthacht

Zentrum für Material- und Küstenforschung

Water column nitrate isotopes in the Skagerrak and Kattegat region

- To evaluate recycling in the Skagerrak and east of it, we zoom into the Skagerrak/Kattegat region....
- Low surface $\delta^{15}\rm N_{NO3}$ values in the Kattegat may be a sign of nincreasing importance of $\rm N_2$ fixation
- In shallower Kattegat water, we see that bottom water nitrate isotopes reflect the sedimentary source (6-7 ‰, Voss et al. 2005)

Nutrient regeneration and benthic fluxes in the Coastal Baltic and North Sea Kirstin Dähnke, Andreas Neumann, Tina Sanders

Zentrum für Material- und Küstenforschung

What is the role of benthic fauna in the North Sea?

- Evaluation of MSM 50 values in the North Sea to an annual data set of flux measurements
- Bottom water temperature is high, but DIN fluxes cannot keep pace - low values in January despite high temperatures, possibly due to low faunal abundance

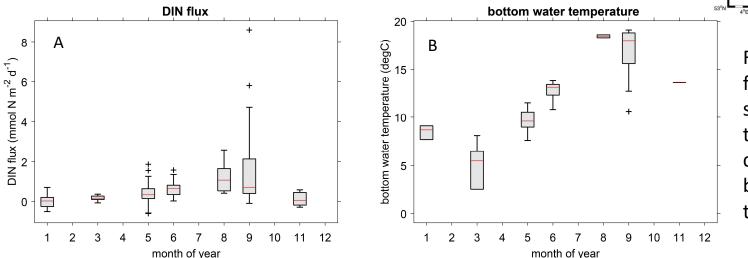


Figure 4: benthic fluxes of DIN at sampling stations in the North Sea (A) in comparison to bottom water temperature (B)

Neumann et al., submitted to Limnology & Oceanoraphy

Zentrum für Material- und Küstenforschung

Summary and Conclusions

- Sediments can be a source of nitrate, so that nitrate isotopes mirror sedimentary N
- Kattegat: sedimentary N-source is visible in relatively high $\delta^{15}N_{NO3}$ in bottom waters, whereas surface water $\delta^{15}N_{NO3}$ is lighter and may be a sign of increasing influence of N₂ fixation
- North Sea: outside the Elbe extended estuary, δ¹⁵N_{NO3} is lighter than an assumed sedimentary source, benthic fluxes appear less important – this may also be due to better mixing in the water column
- Low activity of benthic fauna in the North Sea region may be a cause of lower benthic fluxes

