

EGU Sharing Geoscience Online 2020

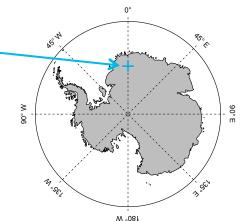
Testing the ideal ice-core record for past temperature reconstructions using combined isotope and impurity analyses

Thomas Münch, Maria Hörhold, Johannes Freitag, Melanie Behrens, Thomas Laepple

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Germany

European Research Council Established by the European Commission

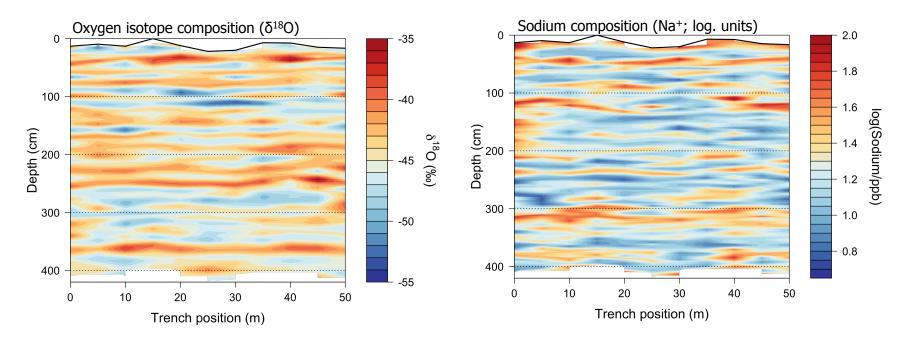
Space-Time Structure of Climate Change


Strategy fund COMB-i

Trench-sampling at Kohnen Station, Antarctica

EPICA EDML site Kohnen Station @ 75 °S, 0 °E. <----Characterised by

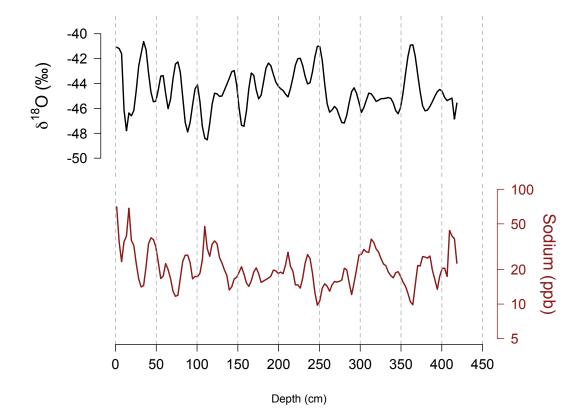
- low accumulation (~ 20 cm snow per year)
- high stratigraphic noise level (Münch et al. 2016, 2017)
- strong noise from precipitation intermittency (Laepple et al. 2018, Casado et al. 2020)



We created **a new trench of 50 m length x 4 m depth** to obtain combined, representative and subannualy resolved profiles of isotope and impurity composition.

Thomas **Münch** et al.

Studying depositional characteristics: 2D view



> The 2D stratigraphy allows testing for a common deposition history.

Thomas **Münch** et al.

Studying depositional characteristics: Mean profiles

- Comparison of the trench mean profiles enables us to study the influence of precipitation intermittency:
 - strong isotopic maxima (summer) coincide with very low Na⁺ concentration.
 - weak isotopic maxima tend to occur with strong Na⁺ signals.

First tentative results...

- Residual 2D stratigraphy around the mean profiles suggests a common redistribution:
 - positive correlation between $\delta^{18}O$ and Na⁺ residuals
 - however weak: ~ 0.3
 - what explains the remaining variability around the mean?
- Preliminary dating (layer counting) suggests a link between the summer signals:
 - strong negative correlation (\sim –0.75) observed between isotopic and Na $^{\scriptscriptstyle +}$ summer signals
 - this could indicate the strength of the intermittency of summer precipitation.
- Extending these analyses can potentially yield a way to actively reduce the intermittency noise and so improve isotope-based temperature reconstructions.

