Towards non-linear inverse problem for atmospheric source term determination

Ondřej Tichý, Václav Šmídl

The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czech Republic

May 4, 2020

ション ふゆ アメリア メリア しょうくしゃ

Problem formulation

 we assume linear model of atmospheric dispersion using a source-receptor sensitivity (SRS) matrix M as

$$\mathbf{y} = \mathbf{M}\mathbf{x} + \mathbf{e},\tag{1}$$

ション ふゆ く 山 マ チャット しょうくしゃ

 $\mathbf{y} \in \Re^{\rho}$ is a vector aggregating measurements $\mathbf{M} \in \Re^{\rho \times n}$ is the SRS matrix $\mathbf{x} \in \Re^{n}$ is a vector of the unknown release to be estimated $\mathbf{e} \in \Re^{\rho}$ is error model

Atmospheric model error

- SRS matrix M is traditionally assumed to be correct, which may be misleading
- here, we consider (in general) bi-linear model of the source term estimation problem in the form

$$\mathbf{y} = (\mathbf{M} + \Delta_{\mathbf{M}}) \, \mathbf{x} + \mathbf{e}, \tag{2}$$

ション ふゆ アメリア メリア しょうくしゃ

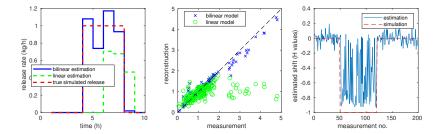
where Δ_M is the deviation of M from the "correct" SRS fields.

► the deviation Δ_M can express, e.g., temporal shift and/or spatial shift

Bi-linear formulation

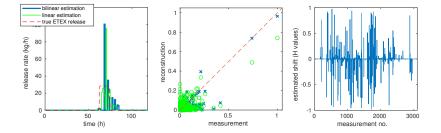
bi-linear formulation of the problem

$$\mathbf{y} = \left(\mathbf{M} + \underbrace{\operatorname{diag}\left(\mathbf{h}_{t}\right)}_{\mathbf{H}_{t}}\underbrace{\left(\mathbf{M}_{t\text{-shift}+} - \mathbf{M}_{t\text{-shift}-}\right)}_{\mathbf{S}_{t}}\right)\mathbf{x} + \mathbf{e}, \quad (3)$$


◆□ > < 個 > < E > < E > E 9 < 0</p>

▶
$$\mathbf{h}_t \in [-1; +1]$$
 are (unknown) coefficients
▶ $\mathbf{M}_{t-shift+}$ and $\mathbf{M}_{t-shift-}$ are shifted SRS matrices

Variational Bayes solution (in short)


- prior p(y) is modeled as Gaussian with estimated scalar precession
- ▶ p(H_t) is modeled according to the sparse Bayesian learning [Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of machine learning research, 1, 211-244, 2001.]
- p(x) is modeled as the LS-APC prior
 [O. Tichý, V. Šmídl, R. Hofman, and A. Stohl. LS-APC v1.0: a tuning-free method for the linear inverse problem and its application to source-term determination. Geoscientific Model Development, 9(11):4297-4311, 2016.]

Synthetic example

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

ETEX example

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

Preliminary conclusions

- it is possible to estimate parametric corruptions the SRS fields and correct them
- better measurements fit is observed (indeed, also overfiting in specific cases)

feel free to contact me at otichy@utia.cas.cz

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●