Chemical composition and colloidal properties of dissolved organic matter in Norway spruce forest stands of different ages

 $\frac{\text{Viktoriia Meklesh}}{\text{Per Persson}^{1,2}} \stackrel{1,2}{\text{Erika Andersson}^3} \text{Luigi Gentile}^4 \text{ Anders Tunlid}^3 \text{ Ulf Olsson}^2$

¹Centre for Environmental and Climate Research, Lund University, Sweden

²Physical Chemistry division, Lund University, Sweden

³Biology department, Lund University, Sweden

⁴Department of Chemistry, University of Bari Aldo Moro, Italy

EGU 2020

Soil sampling

Tönnersjöhedens experimental area in south-west Sweden

- organic layer (+ forest litter)
- 3 forest and 3 adjacent field soils
- 90 year chronosequence of Norwegian spruce forests (*Picea abies*)

Spruce forest

Hot DOM extraction: 100°C, 200 nm filter

EGU 2020

DOM HOT extract, elemental analysis

Forest DOM \rightarrow more acidic

Decomposition rate \searrow in forest soils

Spectroscopy analysis: ¹H NMR

Main fraction of DOM \rightarrow carbohydrates \simeq 60 %

Spectroscopy analysis: ^{13}C NMR & IR

Dynamic Light Scattering (DLS) & zeta-potential

SAXS

Conclusions

Chemical structure

- ¹H NMR,¹³C NMR and IR showed that field and forest DOM have strikingly similar chemical composition
- Forest and field hot DOM consist mainly of carbohydrates
- Forest DOM is more acidic, contain more organic carbon than field DOM
- No particular difference in forest DOM extracts of different ages of the forest stand

$Colloidal\ structure$

- $\bullet\,$ Size of colloidal DOM \simeq 100 nm, expected from the size of the filter
- \bullet Zeta-potential is negative \cong -10 mV; colloids are unstable/marginally stable
- SAXS profiles of forest and field DOM are similar. Proposed SAXS model: cellulose cluster + semi-flexible polymer coils.

VIKTORIIA MEKLESH

DOM PROPERTIES