University of BRISTOL

ABSTRACT

Increasing atmospheric CO₂ concentrations in temperate forests may affect soil nitrogen (N) cycling processes due to the increased demand for nitrogen by trees to support CO₂ uptake through photosynthesis.

We have measured gross rates of N mineralisation, nitrification, asymbiotic nitrogen fixation and source partitioned N₂O production in a Free-Air CO₂ Enrichment (FACE) facility in a mature temperate oak dominated forest.

Following the first year of CO₂ fumigation, there were indications of soil N limitation. However, after only 2 years of the FACE experiment there is strong evidence of a shift in key soil N processes to sustain the enhanced nutrient demands to support enhanced canopy CO₂ uptake.

CONTACT

Fotis Sgouridis School of Geographical Sciences University of Bristol Email: f.sgouridis@bristol.ac.uk Phone: +44 (0) 1179 288078

Increasing atmospheric CO₂ concentrations in temperate forests may affect soil nitrogen (N) cycling processes due to the increased demand for nitrogen availability by trees to support CO₂ uptake through photosynthesis. This in turn can affect the emission of nitrous oxide (N₂O) from the forest soil leading to a potential trade-off between the enhanced canopy CO₂ uptake and soil N2O emission.

The Birmingham Institute of Forest Research (BIFoR) established a Free-Air CO₂ Enrichment (FACE) facility in 2017 in a mature temperate oak dominated forest to study under 'real world' conditions the risks of a changing climate to forest ecosystems and the services they provide. We hypothesised that N mineralisation and N₂O production would increase as a consequence of CO_2 fumigation.

•

(cc)_

In April 2018 and again in May 2019, two years after the start of fumigation with 550 ppm CO₂, we collected soil samples (0 – 15 cm depth) from the three elevated CO_2 (eCO_2) and three control plots.(Fig. 1).

Soils were amended in the laboratory with 98 at % ¹⁵N- NH_4^+ and $^{15}N-NO_3^-$ (at ~20 % of the ambient soil NH_4^+ and NO_3 - concentration) and were incubated in the dark for 24 hours. Gross N mineralisation and nitrification were estimated according to the isotope dilution technique, while N_2O emission from nitrification (¹⁵N-NH₄⁺ treatment) and denitrification (15 N-NO₃- treatment) were estimated according to the ¹⁵N Gas-Flux method. Additionally, C/N ratio and $\delta^{15}N$ and $\delta^{13}C$ were measured in unamended eCO₂ and control samples via EA-IRMS.

Stimulation of soil N cycling after two years of Free Air CO₂ Enrichment increases nitrous oxide emissions in a temperate forest, UK.

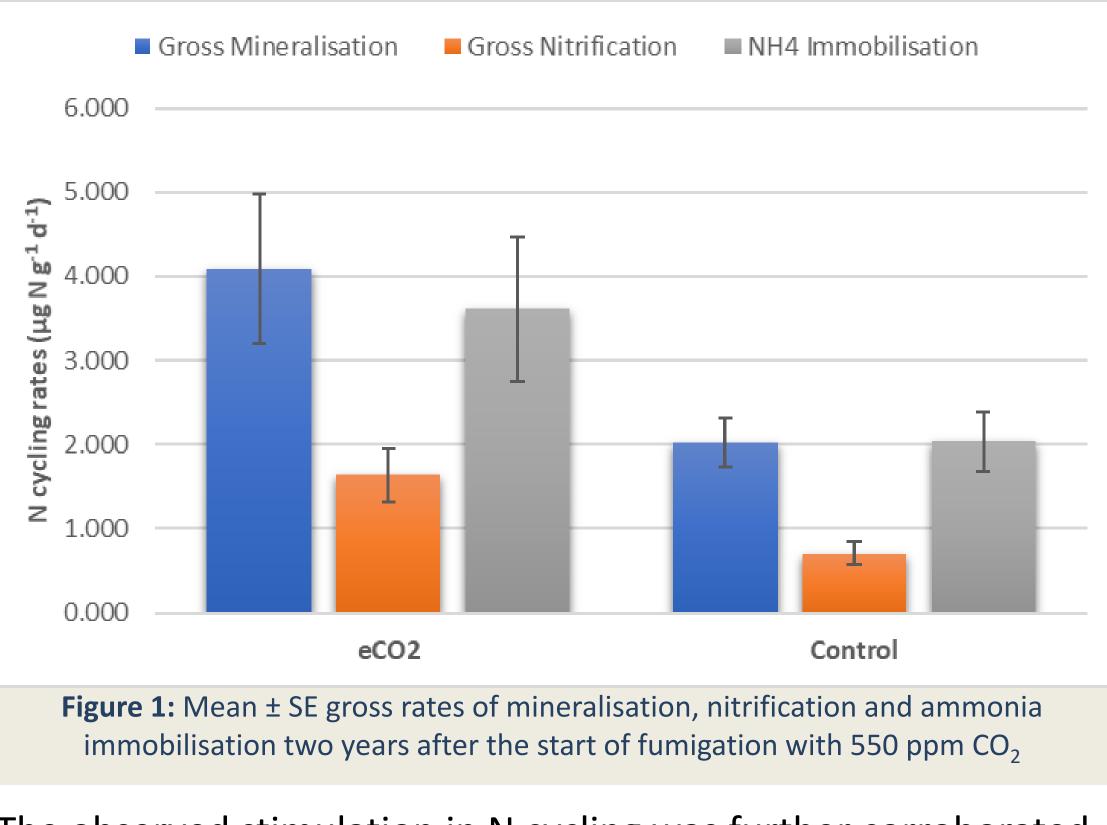
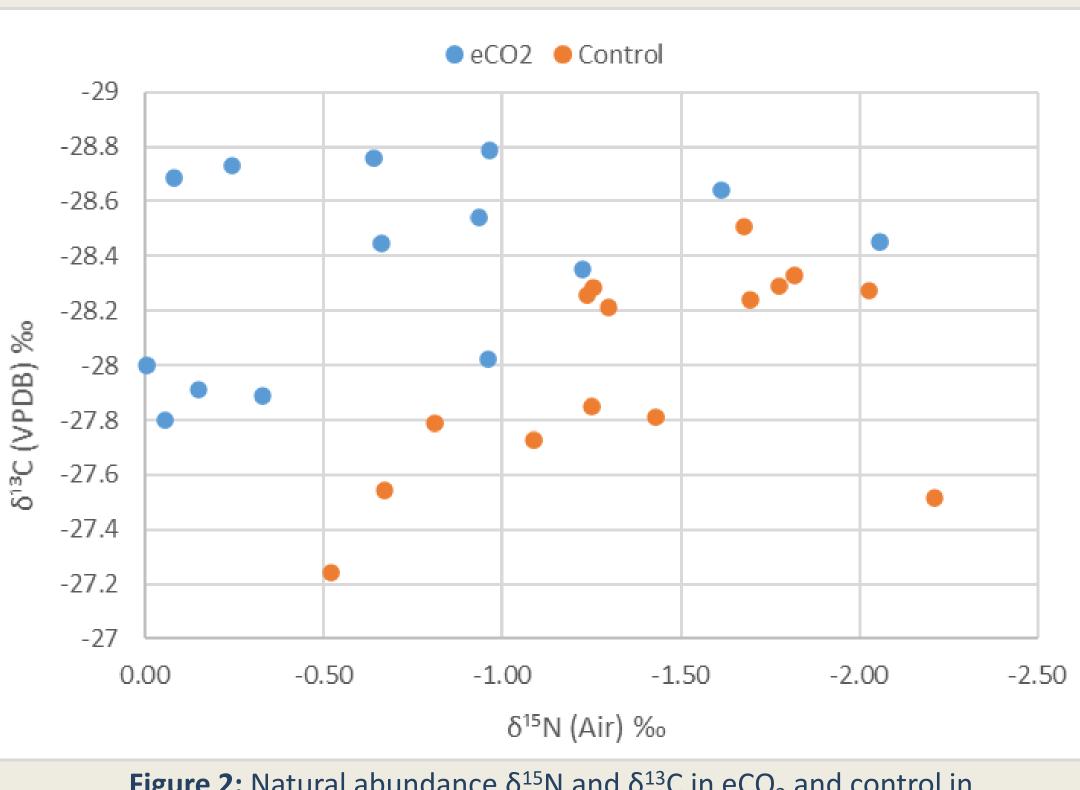

INTRODUCTION

Figure 1: The BiFOR FACE facility in a mature oak woodland in Staffordshire, UK.


STUDY SITE AND METHODS

Whilst gross N mineralisation and N₂O emission were only marginally higher in eCO₂ plots compared to controls after one year of fumigation, there was a significant stimulation of N cycling after the second year that led to more pronounced differences.

Gross N mineralisation rates doubled in the eCO₂ plots compared to the control plots, while a similar twofold increase was observed for gross nitrification rates (p < 0.05). Ammonia immobilisation was not significantly different but dominated (~70 %) ammonia consumption pointing towards N limitation in these forest soils (Fig.1).

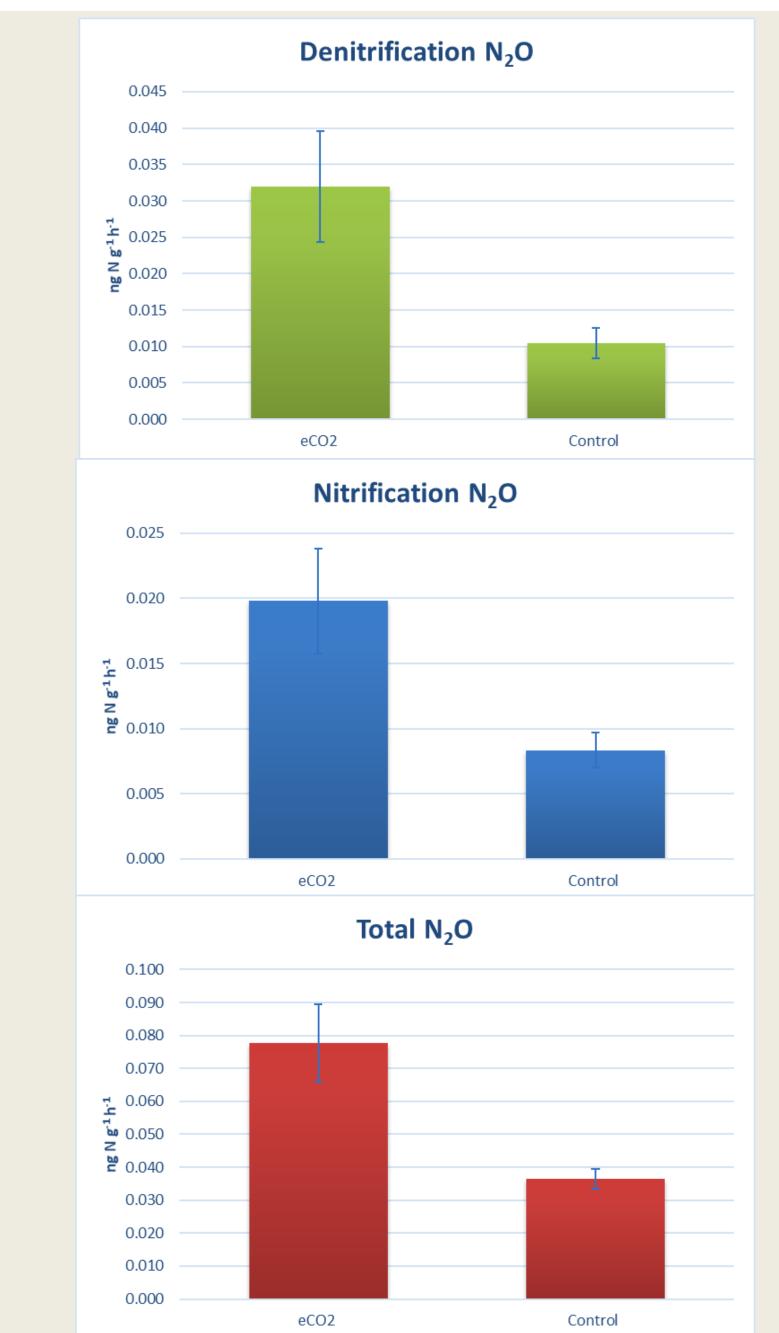
The observed stimulation in N cycling was further corroborated by the significantly enriched $\delta^{15}N$ signal (mean -0.66 ‰) in eCO₂ plots compared to the controls (mean -1.38‰). Moreover, the eCO₂ samples had a more depleted δ^{13} C signal (mean -28.37 ‰) compared to the controls (mean -27.99 ‰), probably as a result of the additional carbon supplied through fumigation (CO₂: δ^{13} C ~ -28 ‰).

Fotis Sgouridis¹, S. Cotchim^{2,3} and S. Ullah² ¹University of Bristol, ²Birmingham Institute of Forest Research, ³Prince of Songkla University, Thailand

RESULTS AND DISCUSSION

Figure 2: Natural abundance $\delta^{15}N$ and $\delta^{13}C$ in eCO₂ and control in unamended forest soil samples.

N₂O emission from both denitrification and nitrification were significantly higher (almost double) in eCO_2 compared to the control plots (Fig. 3). Both processes contributed roughly equally to the increase of total N_2O emission in CO_2 fumigated forest soils.


Figure 4: Mean ± SE rate of N₂O production from nitrification and denitrification sources and total N₂O emission.

Subsequently a shift in key N transformation processes was observed in the 2nd year with significantly increased gross mineralisation and nitrification rates in fumigated plots.

 \Box N₂O emissions by both denitrification and nitrification also increased in response to CO₂ fumigation.

We would like to acknowledge the funding support of the British Council and the Thailand Research Fund under the Newton Fund Institutional Links program for supporting this research. We thank the Birmingham Institute of Forest Research at Birmingham University for allowing access to the site for research.

CONCLUSIONS

 \Box Soil N limitation was observed after 1 year of CO₂ fumigation due to the increased demand for nitrogen availability by trees to support CO₂ uptake through photosynthesis.

ACKNOWLEDGEMENTS