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The 1929 event & the St. Pierre Slope
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3< Mw <4On November 18th 1929 a Mw 7.2 strike-slip earthquake (    ; <20 cm 
of vertical displacement) occurred in ~20 km depth underneath the 
Laurentian Fan of the southwestern Grand Banks of Newfoundland 
(Bent, 1995). This earthquake caused a submarine landslide, which led 
to the first observation of naturally occurring turbidity currents and is 
one of the few landslides known to have caused a tsunami. The 
turbidity current broke 12 transatlantic tele-communication cables and 
the tsunami killed 28 people and destroyed onshore infrastructure, 
especially on Burin Peninsula of Newfoundland. 

Modified from Piper, 2009

The 1929 submarine landslide is described as follow: 

➢ widespread, translational + retrogressive sediment failure = <25 m-
thick (Piper et al., 1999; Mosher & Piper, 2007; Schulten et al., 2018)

➢ rapid flow transformation into turbidity currents (Piper et al., 1999) 

➢ volume estimate: ~100 km³,~40% entered the turbidity currents 
(Piper & Aksu, 1987; McCall, 2006; Schulten et al., 2018) 

➢ main failure area = St. Pierre Slope (Piper et al., 1999)
▪ numerous shallow escarpments in >730 m water depth (mwd) 
▪ numerous incised valleys & canyon systems 



Objective & Methods

I. Seismic reflection data and multibeam data analysis; 
published in Schulten et al. (2019) 
▪ establishing a full stratigraphy St. Pierre Slope using results of 

previous publications 
▪ identification of previously unrecognized sub-bottom structures 

Data source = legacy + newly acquired data (1985-2015): 

▪ multibeam swath bathymetry

▪ ultra high-resolution seismic data

▪ 2D seismic reflection data (high-resolution & industry-scale)

▪ 5 x marine gravity cores from the unfailed part of the slope 
(~500-730 mwd)

Open question: water depth of surficial failure, their thin nature and rapid 
flow transition contradict what might be expected for a tsunamigenic event

Objective: Need to understand characteristics of initial sediment failure 
= failure dimensions, kinematics, slope stability  

Modified from Schulten et al., 2019
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Objective & Methods

Data source = legacy + newly acquired data (1985-2015): 

▪ multibeam swath bathymetry

▪ ultra high-resolution seismic data

▪ 2D seismic reflection data (high-resolution & industry-scale)

▪ 5 x marine gravity cores from the unfailed part of the slope 
(~500-730 mwd)

II. Geotechnical (consolidation, triaxial, shear strength 
testing) & static and pseudo-static infinite slope stability 
analysis
= sediment cores + sediment slabs (2-550 m-thick) 
▪ FOS for sediment slabs = from normalized shear strength (SuNSP; 

triaxial results) + effective stress (P´vo trend) calculated using an 
equation of Kominz et al. (2011)

▪ PGA to magnitude-distance conversion = equations from 
Atkinson and Boore (2006, AB2006) and Campbell and 
Bozorgnia (2008; CB2008) 

Open question: water depth of surficial failure, their thin nature and rapid 
flow transition contradict what might be expected for a tsunamigenic event

Objective: Need to understand characteristics of initial sediment failure 
= failure dimensions, kinematics, slope stability  

Modified from Schulten et al., 2019
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I. Seismic reflection data & multibeam swath bathymetry (Schulten et al., 2019) 

at St. Pierre Slope reflection offsets 
(black dashed line) are evident underneath 
modern seafloor escarpments down to a 
depth of ~700 ms or 400-550 m (near the 
green reflector) (Schulten et al., 2019)  

upper strata down to ~100 m 
sub-bottom depth (mbsf) 
= consistent stratigraphy and 

interval thicknesses to both 
sites of the reflection offset

Results + Interpretation

Modified from Schulten et al., 2019

low angle (~17°), normal faults (Schulten et al., 2019):  
• ~100 m vertical displacement (Schulten et al., 2019) 
• rupture the modern seafloor  (Schulten et al., 2018)
• down to different depths within the Quaternary 

section of the slope (Schulten et al., 2019)

~120 ms offset  

rhombic shaped 
block  

→ ~30 ka

→ dècollement = ~250 m = ~470 ka

→ dècollement = 400-550 m
= ~1.5-1.8 MA

S



~250 mbsf dècollement (light blue horizon) 
= ~470 ka (MIS 12; Piper et al., 2005) 

• regional unconformity = denotes a change in 
depositional characteristic as a result of shelf-
crossing glaciers + increased sedimentation rate

• overlies thick (30-40 m) mass transport deposits 
(MTD`s) (Schulten et al., 2019) 

400-550 mbsf dècollement (light green to yellow horizon) 
= ~1.5-1.8 Ma (early Pleistocene; Piper & Normark, 1982) 

• overlain by ~40 m-thick MTDs in the shallower part of 
the slope (Schulten et al., 2019)

• underlain by sediment waves further downslope 
(Piper et al., 2005; Schulten et al., 2019) 

Modified from Schulten et al., 2019

I. Seismic reflection data & multibeam swath bathymetry (Schulten et al., 2019) 

faults are part of a massive (~560 km³), complex slump 
with multiple décollements (250 mbsf & 400-550 mbsf) 
and slumping towards S & SW  (Schulten et al., 2019)

Results + Interpretation



II. Geotechnical analysis & infinite slope stability analysis 

1. mainly bioturbated, muddy 
(silt + clay) sediment 
→ interbedded sandier or siltier layers are 

abundant in 400 to 600 cm core depth 
= MTD`s or sandy turbidites 

→ gas expansion cracks are evident in 
>600 cm, capped by the overlying MTD`s 

2. FOS minima = lithological changes between 
MTD`s or sandy turbidites and clay-rich mud 
that show different shear strengths 

3. failure plane at the upper St. Pierre Slope 
in ~10 m depth = core section with gas 
expansion cracks 

4. OCR = 0.76-0.89 from 3 to 9 m = normal (NC) 
to slight underconsolidation (UC) 

Results + Interpretation

A

UC as result of excess pore pressure + 
formation of weak layers due to: 

1) high sedimentation rates 
2) rapidly deposited MTD`s or sandy 

turbidites
3) presence of gas
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upper slope 
(~750 mwd) 
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Results + Interpretation
II. Geotechnical analysis & infinite slope stability analysis 

FOS of sediment slabs (2-550 m-thick) 
= 16°
= 0.22 g for a 2 m 

& 0.27 g for 5-550 m-thick slabs  
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Results + Interpretation
II. Geotechnical analysis & infinite slope stability analysis 

sed. cores = failure 
core data include shear strength reductions, 
additional factors are present (e.g. weak layers)

slabs >10 m = stable 
SuNSP + P`vo trend (corr. for diagenesis) → slope 
stability in response to earthquake loading, no 
additional factors (e.g. weak layers, cyclic loading) 

1929 earthquake = Mw 7.2, ~26 km distance 
= 0.2 g AB2006 or 0.13 g CB2008: 

1929 earthquake: ≠ slump 
≠ surficial failures >10 m

additional factors are needed to explain 
failure in 1929 = presence of weak layers

PGA of 0.09 g = Mw>4.8, <5 km distance
= minimum earthquake loading required to cause 

slope instability under present-day conditions
= earthquakes past 30 yrs = Mw<4, >5 km distance   
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Conclusions

• at St. Pierre Slope planar-normal faults occur down to ~550 mbsf and are part of a complex, massive (~560 km³) slump
= recent activity, as faults rupture the modern seafloor & height of seafloor escarpments matches the total vertical   

displacement along the faults (Schulten et al., 2019) 

• combination of earthquake loading & pre-conditioning factors is necessary to cause slope instability at St. Pierre Slope 

• geomechanical weak layers are a consequence of UC in connection with excess pore pressure

décollements of the slump (250 mbsf & 400-550 mbsf) are associated with MTD’s and sediment waves that 
likely form weak layers susceptible to excess pore pressure development in response to earthquake loading 

• 1929 earthquake = displacement of the slump (550 m-thick block) + surficial (<25 m-thick) failures 

= potential liquifaction within sediment waves + UC in connection with mass deposition and development of excess
pore pressure in response to earthquake loading is necessary to explain failure  

likely a more effective source for tsunami generation than the translational, shallow (<25 m) failures 
= tsunami simulation by Løvholt et al. (2018) supports hypothesis that slumping 

+ surficial failures occurred in 1929 



Please feel free to 
comment in the chat or 
contact me via email at 
Irena.Schulten@dal.ca
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