Temporal variations of CH₄/CO₂/CO fluxes in the central Amazon rainforest ~ Preliminary report: Diel variations ~

<u>Shujiro Komiya</u>¹, Jost Lavric¹, David Walter^{1,2}, Santiago Botia¹, Alessandro Araujo^{3,4}, Marta Sá³, Matthias Sörgel², Stefan Wolff², <u>Hella Asperen⁵, Fumiyoshi Kondo⁶, Susan Trumbore¹</u> ¹Max Planck Institute for Biogeochemistry, Germany ²Max Planck Institute for Chemistry, Germany ³Instituto Nacional de Pesquisas da Amazônia (INPA) · Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA), Brazil ⁴Brazilian Agricultural Research Corporation (EMBRAPA) · Embrapa Amazônia Oriental, Brazil ⁵Institute for Environmental Physics (IUP), University of Bremen, Germany ⁶Japan Coast Guard Academy, Japan Contact email: skomiya@bgc-jena.mpg.de (Photo by Sebastian Brill)

Background

Pantanal (South of the Brazil)

ATTO site

- Up wind area (NE to E)
- Upland forest
- -> Probably less CH₄ source

Gas Observation at ATTO 80 m tower

- Turbulent flux calculation
- CO₂ flux: Eddy Covariance (EC)
- CH₄/CO flux: Modified Bowen ratio (MBR)
- Net flux = Turbulent flux + Storage flux

Mean diel net CO₂ flux in wet/dry seasons

Eddy CO₂ flux ~ EC vs MBR in 2015

Mean diel net CH₄/CO flux in wet/dry seasons

6

2

-4

6

0

Mean net-CH₄ flux (nmol $m^{-2} s^{-1}$)

CH₄-Wet (February + March + April)

CH₄-Dry (July + August + September)

1⁰ Hour (LT)

CO-Dry (July + August + September)

5

2017

2018

2014

2015

2016

20

15

CO-Wet (February + March + April)

Preliminary Summary and Conclusions

- MBR-CO₂ fluxes mostly agreed with EC-CO₂ fluxes
- MBR-CH₄ flux magnitudes
 - Similar to past upland rainforest studies (Querino et al., 2011; Asperen et al., 2020)
- Diel variations in CO₂ flux
 - Wet season in each year showed higher CO₂ uptake than dry season except for 2017
 - Highest CO₂ uptake during the 2017-dry season might be linked to the largest difference in precipitation between wet and dry seasons.
- Diel variations in CH₄ flux
 - Wet season in each year was smaller than dry season
- Diel variations in CO flux
 - Wet season in each year was similar to or smaller than dry season

Acknowledgments

German-Brazilian project ATTO, supported by the German Federal Ministry of Education and Research (BMBF contracts 01LB1001A and FKR 01LK1602A) and the Brazilian Ministério da Ciência, Tecnologia e Inovação (MCTI/FINEP contract 01.11.01248.00), the Max Planck Society as well as the Amazon State University (UEA), FAPEAM, LBA/INPA, EU FP7 project ICOS-INWIRE (grant agreement n°313169), DLR, Fundacao Eliseu Alves and SDS/CEUC/RDS-Uatumã.

We wish to thank the TAG group members Steffen Schmidt, Uwe Schultz and Thomas Seifert as well as the MPI-BGC Gaslab, Field Experiments & Instrument group, Mechanical and Electrical workshops, and all the people involved in the technical and logistical support of the ATTO project, in particular Reiner Ditz, Bruno Takeshi, Thomas Disper, Andrew Crozier, Hermes Braga Xavier and Olaf Kolle.