Global Glacier Mass Loss estimated from GRACE and GRACE-FO Satellite Observations (2002-2019)

Bert Wouters, Alex Gardner, Geir Moholdt and Ingo Sasgen

Background

Sea level change 1993-2016 (Cazenave, 2018)

Mountain glaciers & ice caps

Greenland

Antarctica

 Non-ice (ocean thermal expansion, land water storage)

Historically, mountain glaciers have been the largest land-based contributors to sea level rise and are projected to continue to play a key role in the future

SROCC Projections 2100

Regions

Mass balance was computed for 17 RGI^{*} glacier regions, based on changes in the gravitational field observed by GRACE (2002-2017) and GRACE-FO (2018-present)

- 1. Alaska
- 2. Western Canada & US
- 3. Arctic Canada North
- 4. Arctic Canada South
- 6. Iceland
- 7. Svalbard
- 8. Scandinavia
- 9. Arctic Russia

- 10. North Asia
- 11. Central Europe
- 12. Caucasus
- 13. Central Asia
- 14. South Asia West
- 15. South Asia West
- 16. Low Latitudes
- 17. Southern Andes

Results (interested in method? See last slide)

Mass balance of the global glacier population has been *consistently negative* over the observational period (Apr 2002 – Dec 2019)

Exceptional mass loss of approximately 500 km³ water equivalent in 2019

Results

Most of the 2019 mass loss can be attributed to the Arctic glaciers:

exceptional summer melt (~700 km³) + below-average winter gain (~200 km³)

~ 510 km³ mass loss

Results

Alaska largest net contributor strongest

Strongest relative losses observed in Southern Andes (but with large uncertainties)

RGI region	Area [km²]	Annual mass change [Gt yr ⁻¹]	Specific mass balance [kg m ⁻² yr ⁻¹]
)1. Alaska	86725	-64.3 ± 13.2	-740 ± 150
02. Western Canada and US	14524	-5.5 ± 18.3	-380 ± 1260
03. Arctic Canada North	105111	-30.6 ± 3.3	-290 ± 30
04. Arctic Canada South	40888	-32.5 ± 7.7	-790 ± 190
)6. Iceland	11060	-9 ± 2	-820 ± 180
)7. Svalbard	33959	-12.1 ± 2.1	-360 ± 60
)8. Scandinavia	2949	-0.9 ± 8.4	-310 ± 2830
)9. Arctic Russia	51592	-13.5 ± 2.9	-260 ± 60
LO. North Asia	2410	2.3 ± 4.5	940 ± 1880
1. Central Europe	2092	0.2 ± 0.9	80 ± 440
2. Caucasus	1307	-0.8 ± 2.9	-650 ± 2230
L3+14+15. HMA	97606	-12.4 ± 16.1	-130 ± 170
6. Low Latitudes	2341	2.7 + 5.2	1130 + 2220
7. Southern Andes	29429	-27.9 + 10.8	-950 ± 370
8 New Zealand	1162	-0 3 + 1 1	-260 + 910

Workflow (for details, see <u>Wouters et al., Frontiers, 2019</u>)

Add degree 1 coefficients + replace C₂₀ and C₃₀

Combine 4 sets of spherical harmonics into one solution (error-weighted average)

Mass inversion in 17 glacier regions Correction for Glacial Isostatic Adjustment and non-glacial hydrological signals (e.g. seasonal snow)

Time series & error weighted trend estimates

Questions or comments?

Catch me in the chat, or email to:

Bert.Wouters@tudelft.nl

or

B.Wouters@uu.nl

