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The presence of fractures and discontinuities in the intact rock affects the hydraulic, thermal, chemical and mechanical behavior of the
underground activities. Various techniques have been developed to provide information about the spatial distribution of these complex
features. LIDAR could provide a 3D fracture network model of the outcrop, Geolophysical borehole logs such as OPTV and ATV can be used
to investigate 1D geometrical data (such as dip and dip direction) of the intersected fractures, and seismic survey can mainly offer a large
structure distribution of the deep structures. An effort to combine all the existing data collected from various resources and different scales
is inevitable to construct a 3D discrete fracture network (DFN) model of the rock mass that could adequately represent the physical
behavior of the interested subsurface structure.

In this study, an effort on the construction of such a DFN model is carried out via combination of various structural and hydrogeological
data in fractured crystalline rock. During the pre-characterization phase of the In-situ Stimulation and Circulation (ISC) experiment [Amann
et al.,, 2018] at the Grimsel Test Site (GTS) in central Switzerland, a comprehensive characterization campaign was carried out to better
understand the hydromechanical characteristics of the existing structures. The collected multiscale and multidisciplinary data such as
OPTV, ATV, hydraulic packer testing and solute tracer tests [Jalali et al., 2018; Krietsch et al., 2018] are combined, analyzed and interpreted
to form a stochastic-deterministic DFN model using the FracMan code. For further validation of the model, additional hydraulic tests are
considered and comparison between the simulated and measured hydraulic responses allowed to justify if the simulated model could
reasonably represent the considered fracture network in the ISC experiment.
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Key Points

* The main objective of this work is to build a 3D discrete fractute network (DFN) model using
deterministic shear zones (51 & S3) and stochastically generated fractures using the FracMan®
software.

* The geological properties of the generated fractures are constrained
using borehole logging data such as borehole optical televiewer
(OPTV) from two boreholes (INJ1 & INJ2).

* The hydraulic properties of the fractures are retrained using the results
of in-situ packer tests such as pulse, constant rate and head injection
tests which were conducted in various intervals in the two boreholes.
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* The model shows not only geometric fracture distribution but also hydraulic properties of the
fractures and possible hydraulic connectivity between different intervals.
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Geological Data Construction
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Constant Rate Injection

Hydrogeological Data Construction
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Injection rate into the interval 1-3
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Injection rate into the interval 2-3
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Injection rate into the interval 2-4
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Constant Head Injection

Injection Miessures
interval CIEPH
[m]
CHI #1 28.53 - 29.05
CHI #2 27.11 - 27.63
CHI #3 26.25 - 26.77
CHI #4 24.83 - 25.35
CHI #5 24.31-24.83
CHI #6 23.38 - 23.90
CHI #7 22.89-23.41
CHI #8 21.96 - 22.48
CHI #9 32.53 -33.05
CHI #10 31.64-32.16
CHI #11 28.58 - 29.10
CHI #12 27.67 - 28.19
CHI #13 27.16 - 27.68

Hydrogeological Data Construction

CHI#7

Pressure change in the injection interval CHI#7
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Hydrogeological Data Construction

Pressure Changes in the Intervals [KPa]

Monitoring interval
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* Large difference in fracture intensity (P10) indicating the distribution of fracture intersections along the borehole
are variable. Higher density of the simulated fracture located near the six considered shear zones along the two
boreholes is in a good agreement with the fracture distribution measured using OPTV logs.

 Strong conductivity and connectivity between two S3 shear zones and the boreholes (i.e. INT1-3, INT1-4, INT2-3,
and INT2-4) were captured in both in-situ measurements and simulation data.

« Similar to the in-situ measurement, simulated results also show obvious asymmetry. Since the natural flow
gradient toward the tunnels is neglected in the simulation procedure, the asymmetric pressure responses in
various intervals mainly results from the heterogeneity of the fractures.
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