
The impact of orbital forcing on the Arctic climate during the Last Interglacial simulated by the IPSL-CM6A-LR model

UNIVERSITÉ DE Versailles

UNIVERSITE PARIS-SACLAY

LSCE

Take-home message : Ocean seems to play a significant role in warming during the Last Interglacial due to its ability to store heat and its major contribution to sea ice melt.

The impact of orbital forcing on the Arctic climate during the Last Interglacial simulated by the IPSL-CM6A-LR model

EGU General Assembly 2020

Marie Sicard (marie.sicard@lsce.ipsl.fr), Masa Kageyama, Sylvie Charbit, Pascale Braconnot Laboratoire des Sciences du Climat et de l'Environnement, CEA-CNRS-UVSQ, 91190 Gif-sur-Yvette, France

CC I

Annex – Heat flux values

	Heat flux (W.m-2)	All	SON	DJF	MAM
Atmosphere	SW	235.8	44.1	8.7	125.7
	LW	230.6	200.0	175.8	197.4
	F _{SFC} (total)	53.0	-34.9	-46.4	≈ 0.0
	AHT	47.8	121.0	120.7	71.7
Ocean	F _{sFC} (ocean)	41.1	-24.8	-27.2	4.9
	ОНТ	20.7	-0.8	-15.0	1.3
	OHS	61.8	-25.6	-42.2	6.2
Sea ice	F _{sFC} (sea ice)	11.9	-10.1	-19.2	-4.9
	F _{OCE}	25.4	13.8	-25.0	-17.6

<u>Table 1</u> : PI heat fluxes for each component of the Arctic climate system : atmosphere, ocean and sea ice. Heat fluxes are in $W.m^{-2}$.

	Heat flux (W.m-2)	AIL	SON	DJF	МАМ
Atmosphere	SW	43.7	1.1	-1.2	11.3
	LW	10.9	5.1	-1.0	-0.3
	F _{sFC} (total)	20.8	-0.6	-5.7	2.2
	AHT	-12.1	3.4	-5.5	-9.4
Ocean	F _{sFC} (ocean)	17.2	-5.5	-9.3	1,1
	ОНТ	7.0	0.4	1.6	0.7
	OHS	24.1	-5.0	-7.7	1.9
Sea ice	F _{sFC} (sea ice)	3.6	4.9	3.6	1.0
	F _{OCE}	10.6	11.5	-6.8	-5.1

<u>Table 2</u> : LIG-PI heat fluxes anomalies for each component of the Arctic climate system : atmosphere, ocean and sea ice. Heat fluxes are in W.m⁻². Positive anomalies are represented in red, negative anomalies in blue.

References

[1] Capron et al. (2017), Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial 1 simulations in the high-latitude regions. Quaternary Science Reviews.

[2] Dutton et al. (2015), Sea-level rise due to polar ice-sheet mass loss during past warm periods. Science.

[3] Otto-bliesner et al. (2017), The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. GMD.

[4] Bartlein and Shafer (2019), Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis. GMD.

[5] Rugenstein et al. (2012), Northern High-Latitude Heat Budget Decomposition and Transient Warming. AMS.

[6] van der Linden et al. (2019), Ocean heat transport into the Arctic under high and low CO2 forcing. Climate Dynamics.

[7] Semtner Jr (1976), A model for the thermodynamic growth of sea ice in numerical investigations of climate. JPO.

Icons from Freepik (https://fr.freepik.com/)

