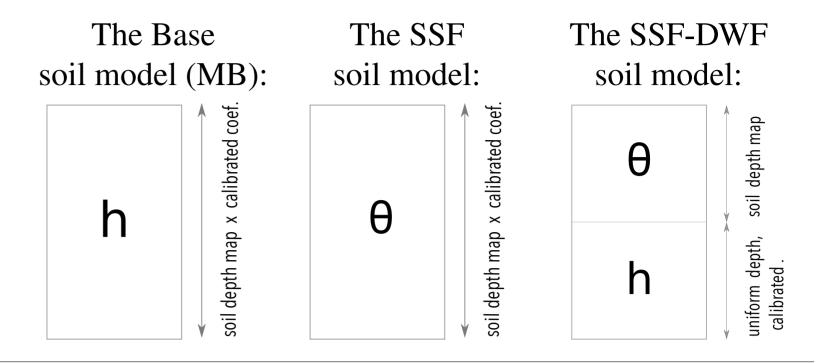
A multi-sourced assessment of the spatiotemporal dynamic of soil saturation in the MARINE flash flood model

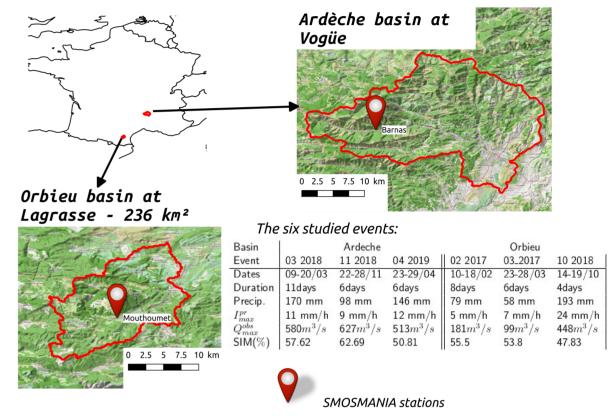
Eeckman, J.¹, Roux, H.¹, Bonan, B.², Albergel, C.², Douinot, A.³

FOULOUSE

¹ Institut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS - Toulouse, FRANCE; ² CNRM (CNRS & Météo-France), Toulouse; ³ Luxembourg Institute of Science and technology, ERIN, Luxembourg


Introduction

The MARINE hydrological model [8] is a distributed model dedicated to flash flood simulation. Recent developments of the MARINE model are presented by [4]: on the one hand, the transfers through the subsurface take place in a homogeneous soil column based on the volumetric soil water content θ instead of the water height *h* (**SSF model**). On the other hand, the soil column is divided into two layers, which represent respectively the upper soil layer and the deep weathered rocks (**SSF-DWF model**). The aim of this work is to assess the performances of these new representations for the simulation of soil saturation during flash flood events.


Data and methods

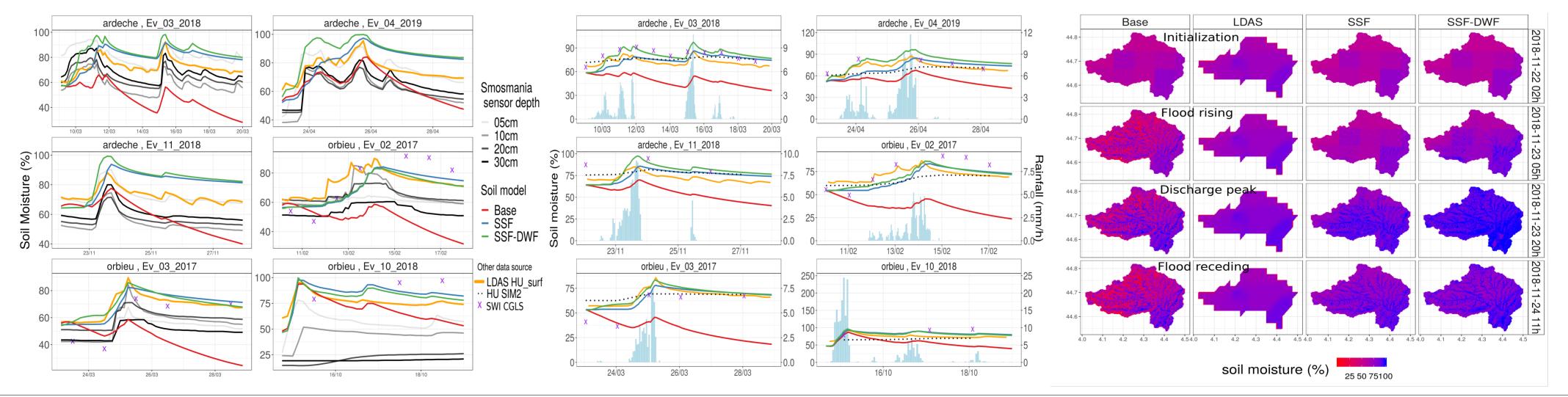
The performances of the model are estimated with respect to several soil moisture products, either at the local scale or spatially extended:

- 1. The gridded soil moisture product provided by the operational modeling chain **SAFRAN-ISBA-MODCOU** (SIM) [6] at the daily time step and at the 8-km resolution.
- 2. The gridded soil moisture product provided by the LDAS-Monde assimilation chain [1], based on the ISBA-a-gs land surface model and assimilating high resolution spatial remote sensing data. LDAS-Monde is available at the hourly time step and at the 2.5-km resolution.

Figure 1: The studied basins and events

- 3. The upper soil moisture hourly measurements taken from the SMOSMANIA observation network [2];
- 4. The **Soil Water Index** (SWI) provided by the **Copernicus Global Land Service** (CGLS), derived from Sentinel1/C-band SAR and ASCAT satellite data, at the daily time step and at the 1-km resolution.

The case study is led over two french Mediterranean basins impacted by flash flood events over the 2017-2019 period and where one SMOSMANIA station is available. The ANTILOPE QPE [7], a fusion between radar data and pluviometric measurements, is used for the model precipitation input. The calibrations of MARINE proposed by [5] and [3] are used. Soil moisture is initialized with the SIM data.


Results

The local comparison of the MARINE outputs with the SMOSMANIA measurements, as well as the comparison at the basin scale of the MARINE outputs with the gridded LDAS-Monde and CGLS data lead to the same conclusions: the dynamics as well as the amplitudes of the soil moisture simulated with the SSF and SSF-DWF models are better correlated with both the SMOSMANIA measurements and the LDAS-Monde data than the outputs of the base model. The emptying of the soil column in the base model is faster than in the SSF and SSF-DWF models. For the SSF-DWF model, the simulation of the deep layer moisture content strongly relies on the deep layer calibration. The two-layers model calibration could then be further investigated.

Figure 2: Local comparison of the MARINE simulated soil moisture with the SMOSMANIA measurements.

Figure 3: Comparison at the basin scale of the MARINE simulated soil moisture with LDAS-Monde and CGLS gridded products.

Figure 4: Soil moisture maps for all of the studied data sources. Case of the November,2018 event over the Ardeche basin.

Conclusions and forthcoming research

- The SSF and the SSF-DWF models allow to improve the soil moisture simulation for surface layers, at the local scale (comparison with Smosmania), as well as at the basin scale (comparison with gridded products: LDAS-Monde and CLGS data).
- Additional data about underground water would be necessary to validate the simulated moisture of the deep layer in the SSF-DWF model.
- The opportunity of improving the SSF-DWF model calibration for discharge simulation is investigated, in particular by considering the geomorphological characteristics of the basins.

References

- [1] Clément Albergel, Simon Munier, Delphine Jennifer Leroux, Hélène Dewaele, David Fairbairn, Alina Lavinia Barbu, Emiliano Gelati, Wouter Dorigo, Stéphanie Faroux, Catherine Meurey, et al. Sequential assimilation of satellite-derived vegetation and soil moisture products using surfex_v8. 0: Ldas-monde assessment over the euro-mediterranean area. *Geoscientific Model Development*, 10(10):3889, 2017.
- [2] Jean-Christophe Calvet, Noureddine Fritz, Françis Froissard, David Suquia, Alain Petitpa, and Bruno Piguet. In situ soil moisture observations for the cal/val of smos: The smosmania network. In 2007 IEEE International Geoscience and Remote Sensing Symposium, pages 1196–1199. IEEE, 2007.
- [3] Audrey Douinot. *Analyse des processus d'écoulement lors de crues à cinétique rapide sur l'arc méditerranéen*. PhD thesis, 2016. Thèse de doctorat dirigée par Dartus, Denis Hydrologie Toulouse 3 2016.
- [4] Audrey Douinot, Hélène Roux, Pierre-André Garambois, and Denis Dartus. Using a multi-hypothesis framework to improve the understanding of flow dynamics during flash floods. *Hydrology and Earth System Sciences*, 22(10):5317–5340, 2018.
- [5] Pierre-André Garambois, Hélène Roux, Kévin Larnier, David Labat, and Denis Dartus. Parameter regionalization for a process-oriented distributed model dedicated to flash floods. *Journal of Hydrology*, 525:383–399, 2015.
- [6] Florence Habets, Aaron Boone, Jean-Louis Champeaux, Pierre Etchevers, Laurent Franchisteguy, Etienne Leblois, Emmanuel Ledoux, P Le Moigne, Eric Martin, Sophie Morel, et al. The safran-isba-modcou hydrometeorological model applied over france. *Journal of Geo-physical Research: Atmospheres*, 113(D6), 2008.
- [7] Olivier Laurantin. Antilope: Hourly rainfall analysis merging radar and rain gauge data. In *Proceedings of the International Symposium on Weather Radar and Hydrology, Grenoble, France*, pages 10–12, 2008.
- [8] Hélène Roux, David Labat, P-A Garambois, M-M Maubourguet, Jacques Chorda, and Denis Dartus. A physically-based parsimonious hydrological model for flash floods in mediterranean catchments. *Natural Hazards and Earth System Sciences*, 11(9):2567–2582, 2011.