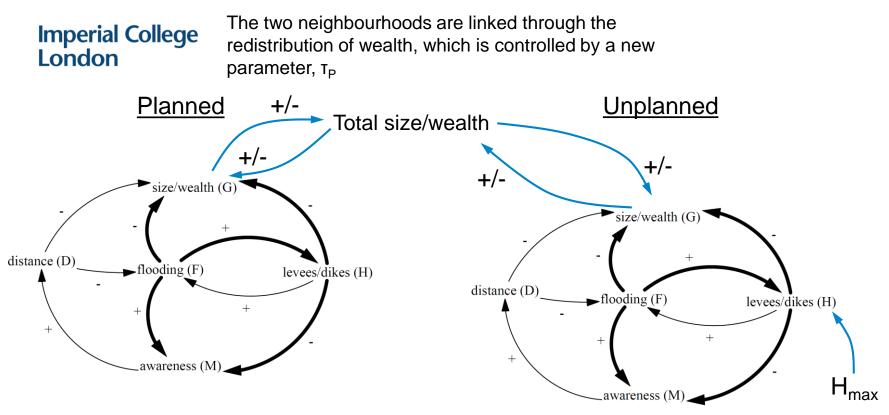


A socio-hydrological model to explore the role of social inequality on human-flood interactions

HS5.2.1 Advances in Socio-Hydrology Tuesday 5th May, 2020

Simon Moulds and Wouter Buytaert <u>simon.moulds@imperial.ac.uk</u> @simmoulds



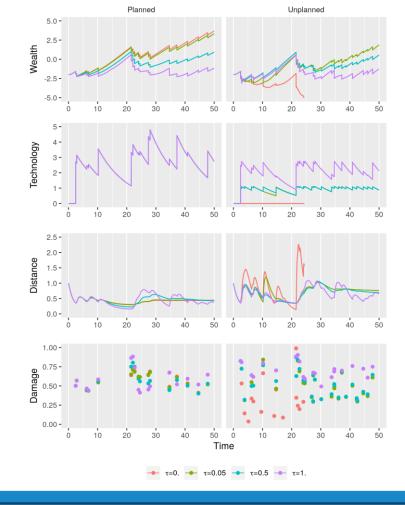
Pathways to Equitable Healthy Cities

http://equitablehealthycities.org/ @Pathways2Equity

Inequality and urban flood risk

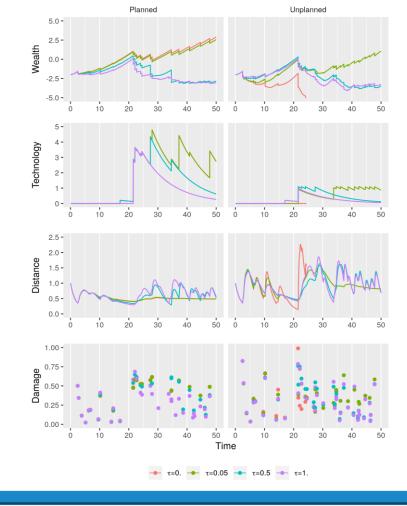
- Cities are heterogeneous, and do not interact with natural hazards uniformly
- The urban poor are disproportionately affected by climate variability and shocks
- Hence, if socio-hydrology is to contribute to the SDGs (Di Baldassarre *et al.*, 2019), <u>it</u> must consider the effect of inequality on human-water interactions
- From a modelling perspective, this will involve encoding societal heterogeneities in our conceptual models
- Here, we adapt the well known flood model of Di Baldassarre *et al.* (2013) and Viglione *et al.* (2014) to consider a stratified society consisting of planned and unplanned settlements

Inequality also manifests as a lack of empowerment. To account for this, we introduce a parameter, H_{max} , to limit the height of flood protection in the unplanned settlement

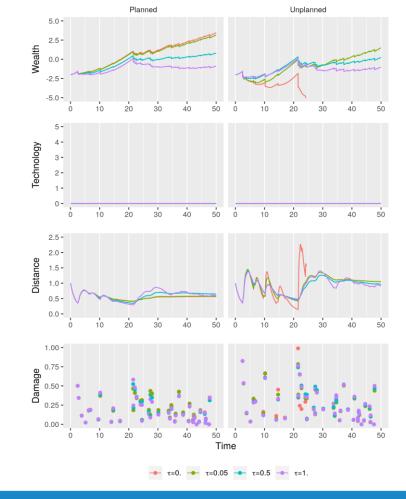

We use three parameters to represent inequality:

	Description	Domain	Planned	Unplanned
τ _P	Proportion of wealth differential which is redistributed	Politics	0	- 1
H _{max}	Maximum height of flood protection	Politics	∞	0 - ∞
α _H	Slope of floodplain/resilience of human settlement	Hydrology	10	0 - 10

All other parameter values as per Viglione et al. (2014)


Scenario 1: Cheap protection

	Planned	Unplanned	
τ _P	{ 0, 0.05, 0.5, 1 }		
H _{max}	$\{ (\infty, 0), (\infty, 1), (\infty, 1), (\infty, 2.5) \}$		
YE	5 · 10 ⁻³		
α _H 10		4	


Scenario 2: Expensive protection

	Planned	Unplanned	
τ _P	{ 0, 0.05, 0.5, 1 }		
H _{max}	$\{ (\infty, 0), (\infty, 1), (\infty, 1), (\infty, 2.5) \}$		
Υ _E	0.1		
α _H	10	4	

Scenario 3: Prohibitively expensive protection

	Planned	Unplanned	
τ _P	{ 0, 0.05, 0.5, 1 }		
H _{max}	{ (∞, 0), (∞, 1), (∞, 1), (∞, 2.5) }		
YE	∞		
α _H 10		4	

Conclusion

- Under scenarios of no wealth redistribution, the unplanned settlement fails before the end of the simulation
- The model is sensitive to the redistribution parameter (τ_P) , highlighting the challenge of selecting an appropriate level of taxation to raise living standards while encouraging economic growth
- Community-driven, sub-optimal flood protection measures (i.e. installing protection which is lower than the previous flood depth) may produce an effect similar to the adaptation effect
- Policies to reduce flood risk must tackle the structural inequalities which contribute to the exposure and vulnerability of inhabitants

References

- Di Baldassarre, G., Sivapalan, M., Rusca, M., Cudennec, C., Garcia, M., Kreibich, H., Konar, M., Mondino, E., Mård, J., Pande, S. and Sanderson, M.R. (2019). Sociohydrology: Scientific challenges in addressing the sustainable development goals. *Water Resources Research*, *55*(8), 6327-6355.
- Di Baldassarre, G., Viglione, A., Carr, G., Kuil, L., Salinas, J. L., & Blöschl, G. (2013). Sociohydrology: conceptualising human-flood interactions. *Hydrology and Earth System Sciences*, *17*(8), 3295.
- Viglione, A., Di Baldassarre, G., Brandimarte, L., Kuil, L., Carr, G., Salinas, J. L., Scolobig, A. & Blöschl, G. (2014). Insights from socio-hydrology modelling on dealing with flood risk–roles of collective memory, risk-taking attitude and trust. *Journal of Hydrology*, *518*, 71-82.