

UMEÅ UNIVERSITET

SOURCES OF AIR-WATER CO₂ -FLUXES FROM SUB-ARCTIC LAKES WITH DIFFERENT DOC Author: Hendricus (Dirk) Verheijen

Most lakes are supersaturated with CO₂, and are thus net sources of CO₂ to the atmosphere. We used data on total yearly fluxes and yearly internal net CO₂ production to quantify the contribution of internal vs external CO₂ sources to annual CO₂-flux. Insight in source contribution to lake CO₂-flux improves our understanding on lake functioning under a changing climate.

Methods

We studied 14 lakes in the Swedish Scandes during the open-water season. We used high-frequency sensors to estimate CO_2 -fluxes and net internal CO_2 -production (community respiration – gross primary production) of CO_2 during the open water season, and DIC mass balance to determine winter CO_2 -buildup and fluxes at spring ice-off.

- The lakes were sampled for DIC at three points at each lake.
- At each 1 sample was taken 1m below the ice and 1m over the bottom. An extra sample was taken at the deepest site.
- CO₂-Fluxes were determined with an equilibrium chamber giving hourly data on surface layer pCO₂ over the full open-water season.
 Wind speed data was used to model the rate of CO₂ -flux.
 NEP, GPP and R were modelled using oxygen loggers in the epi-and hypolimnion during the open-water season. From these data we estimated net CO₂ production for the ice-free season.

2017

- Samples were averaged as epilimnion mass, and hypolimnion mass.
- The ice-off flux was calculated as by subtracting DIC mass after ice-off from before ice-off.

Results and Conclusion

- Yearly CO₂ -Flux increases with increasing lake DOC concentrations, net internal CO₂ -production (R minus GPP) shows the same pattern.
- In 36% of the studied lakes, Net internal CO₂ production was less than total CO₂ Flux. There must thus be an external CO₂ -source making up the difference, for instance CO₂-enriched soil water.
- In 64% of the studied lakes, internal CO₂ –production > total Flux, meaning that not everything produced is outgassed, and the lakes retain some of the CO₂ on annual basis.
- External CO₂-sources are found at both high and low DOC concentrations. Thus source contribution is irrespective of lake DOC concentration.

DOC (mg/l)

Total Flux and Net internal production of CO_2 plotted over lake DOC concentration. Two lakes have been removed as outliers (having >40x higher net internal production than total flux).

We found that annual CO_2 -flux was partly sourced through external CO_2 -input, e.g. CO_2 -enriched water in 36% of the studied lakes. However in most lakes, irrespective of DOC concentrations, internally produced CO_2 can make up the full annual CO_2 -flux.

UMEÅ UNIVERSITY

Department for Ecology and Environmental Sciences, SE 901 87 Umeå. <u>www.umu.se</u>

