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Glossary of terms

BHM: Bayesian hierarchical model.
GIA: Glacial isostatic adjustment, denoted I.
GPS: Global positioning system data, denoted G .
GRACE: Gravity Recovery and Climate Experiment, denoted
R.
INLA: Integrated nested Laplace approximation.
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Section 1

Context & modelling framework

A. Brady et al. 3



GlobalMass
A 5-year project for global sea level rise re-evaluation

GlobalMass
Combine satellite and in-situ data related to different aspects
of the sea level budget,
Attribute global sea level rise to its component parts.

Funded by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme under grant agreement No
69418.
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Global sea level rise re-evaluation

The sea level budget enigma

∆sea level(t) = ∆barystatic(t) + ∆steric(t) + GIA
mass density ocean basins

- GIA: glacial isostatic adjustment
- inconsistencies between the discipline-specific estimates

GlobalMass Aims
Simultaneous global estimates of all the components
Close the sea level budget
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Modelling framework

Utilise Bayesian hierarchical models (BHM) as a flexible
framework for statistical modelling of sea-level rise.
Allows modelling of underlying latent processes and separation
of sources.
Can specify such models as

Parameter: θ ∼ p(θ)
Latent process: x |θ ∼ p(x |θ), where x = {x(u),u ∈ Ω}

Observation: y |x , θ ∼ p(y |x , θ)

for observations y , regions Ω, where the underlying process x is
modelled using a zero-mean Gaussian with variance Q(θ), where θ
is a vector of hyperparameters.
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BHM for sea level rise
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Section 2

Source separation of geophysical signals over
North America
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Geophysical signals over North America

Aim
To separate observations (GPS and GRACE data) over North
America into the contributions provided by GIA and hydrology.

Observation layer: GPS and GRACE data.
Latent process: GIA and hydrology.
Parameter: Prior information for GIA (forward models such
as ICE-6G) and hydrology (basin information or forward
models).
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Process model

Propose that observations (GPS and GRACE) can be decomposed
as

Time-invariant process (GIA), and
Time-evolving process (hydrology) which behaves like an
AR(1).

Then we have

Yt = AtXt + BtZ + ωt , wt ∼ N (0, vt) & B = [B1, ...,BT ]′

Xt = ρXt−1 + εt , εt ∼ N (0, Q−1)

for Yt observations at time t, At an incidence matrix, Xt the
hydrology process, ρ the AR(1) smoothing parameter, Zt the GIA
process with incidence matrix Bt and ωt the error.
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Modelling set-up

Approach
To separate observations (GPS and GRACE data) over North
America into the contributions provided by GIA and hydrology.

1 Convert data into appropriate units (mm of water equivalent).
2 Model discrepancy (mean-zero) between

the simulation m (for example, ICE-6G model)
and the true process X (see Sha et al. (2019) for justification).
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Modelling set-up

3 Calculate annual averages of adjusted GPS and GRACE data
and yearly differences (subtract values for year t − 1 from year
t).

4 Set up observation equations relating data to processes.
5 Fit spatio-temporal model with annual time-step using R-INLA

(see implementation slides), including appropriate priors.
6 Updated discrepancy field is then mapped back to simulation

(North America) grid & GIA reconstructed by adding back m.
7 Hydrology field reconstructed by mapping to North America

grid.
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Modelling set-up chart
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Observation equations

Let Yt := (G t ,Rt), we may write the ICE-6G observations Ỹt as

Ỹt := Yt − ȳt =
[
Y G

t − ȳt
Y R

t − ȳt

]
=

[
At Bt

C t Dt

] [
αt
βt

]
+

[
ut
vt

]
,

Yt are the observations, α and β the latent processes for GIA
and hydrology, Ỹt is the ICE-6G adjusted observation at time t, ȳt
is this adjustment of observations Yt and At ,Bt ,Ct ,Dt the
incidence matrices.
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Implementation: R-INLA

Bayesian inference based upon making a series of Laplace
approximations and numerical integrations.
Advantageous over MCMC when it comes to large-scale
(spatial) data.
Lindgren et al (2011): Gaussian fields can be expressed as
solution of an SPDE, which may be approximated using finite
elements whose elements are triangles over field’s domain.
Map observations to points on this finite element mesh using
incidence matrix.
Benefit: The precision matrix for the field has sparse
approximation Q, with Q−1 close to Σ. Q is quick to
compute using this approach (O(n3/2) vs. O(n3) for the
corresponding dense Σ).
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Key challenges

1. Integration of area-level data within the INLA framework:
The matrix A specified in the SPDE approach is designed to
deal with point-referenced data.
When Yi a point observation at location si , then

Yi =
∑

j
αjφj(si ) = φ(si )α,

hence Aij = φj(si ) for point-level observations such as the
GPS data presented.
Not the case with area-level data such as GRACE.
Idea: Modify the incidence matrix A to allow for areal data
using integral approximations.
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Key challenges

2. Challenges in capturing time-varying hydrology signal
appropriately:

Initial approach: AR(1) parameter tends towards 1.
Investigation into AR(1) points to bi-modal distribution (near
1 and away from 1).
This implies a considerable time-invariant signal present in
hydrology as well.
This signal is absorbed into time-invariant GIA process!
Idea: Use idea of partition models (see Sha et al. (2019) to
allow signal to vary from one catchment to the next.
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Key challenges

3.Loss of sparsity which arises when combining time-invariant
and time-evolving processes:

Addition of the time-invariant field to time-varying process
may erase sparsity in the all-at-once calculation of the
likelihood.
May be sufficient sparsity in the two-process problem over
North America, but may not hold for more processes on a
global scale.
Alternative approach: Model through a Kalman filter
(sequential likelihood).
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Section 3

Further work
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Further work

1 Adapt model to account for these challenges.
2 Implementing BHM for synthetic data to check how well

model captures the signal.
3 Extend approach used here to global sea level rise (slide 7).

This involves:
Inclusion of further processes and datasets.
Handling of large-scale global datasets.
Maintaining sparsity where possible to ensure computational
complexity is reasonable.
Implementing alternative approaches where this becomes
infeasible.
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Contact me

Results not included as currently in progress, but for more
information/further discussion:

Email: A.brady@bristol.ac.uk
Twitter: @Aoibh
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