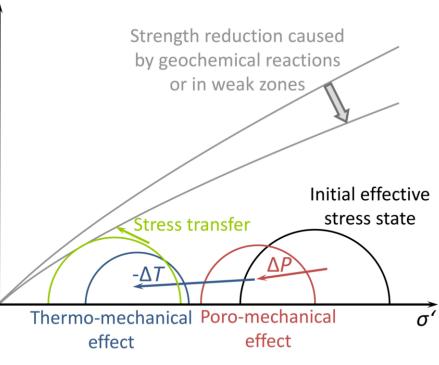
EGU General Assembly 2020, May 4-8, 2020

Cooling effects on induced seismicity in supercritical geothermal systems

F. Parisio^{1,2}, V. Vilarrasa^{3,4}, W. Wang², O. Kolditz^{2,5}, T. Nagel^{1,2} ¹TU Freiberg, ²UFZ Leipzig, ³CSIC-IDAEA Barcelona, ⁴UPC-CSIC Barcelona, ⁵TU Dresden francesco.parisio@protonmail.com

Cooling during re-injection affects mechanical stability

τ


Thermal effects

Estimate of the re-injection temperature

Category	T_{min}	$T_{\sf max}$	T_{\max} < T >		
	°C	°C	°C	°C	
Hot Water	_	220	140	55	
Low Enthalpy	220	250	235	131	
Medium Enthalpy	250	300	275	186	
High Enthalpy	250	330	290	169	
Supercritical	_	_	457	322	

Datum extrapolated for SC from Diaz et al. (2016) Ren Sust Ener Rev

Temperature and pressure changes affect stability

Vilarrasa et al. (2019) Solid Earth

DT=300 °C

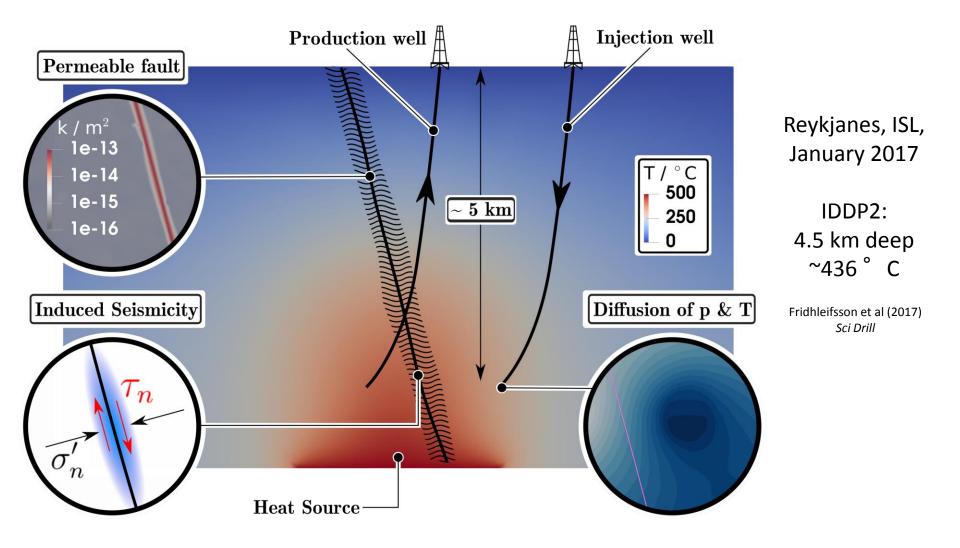
Original study

Induced seismicity in supercritical geothermal systems

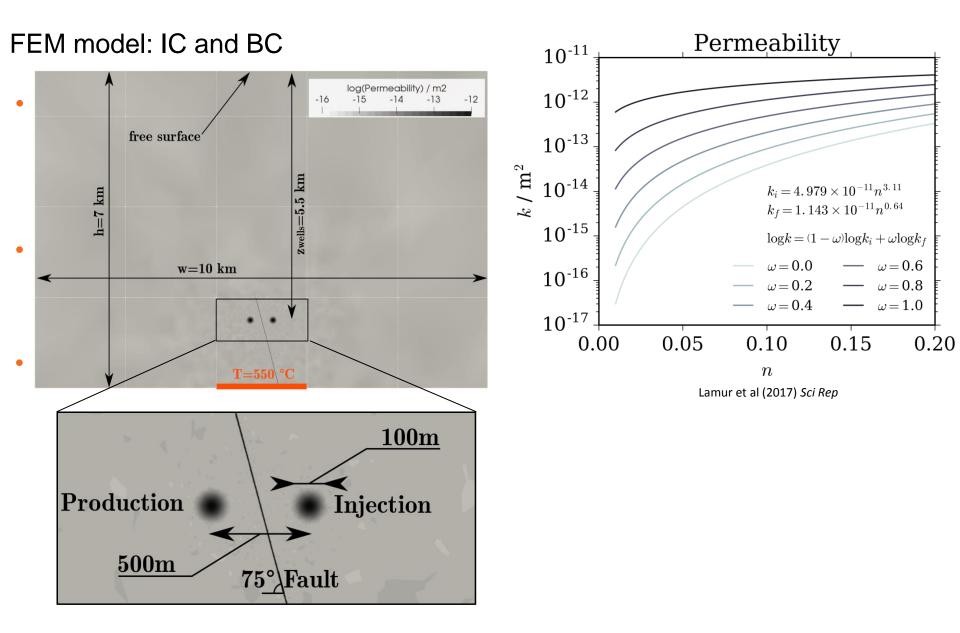
ARTICLE

https://doi.org/10.1038/s41467-019-12146-0

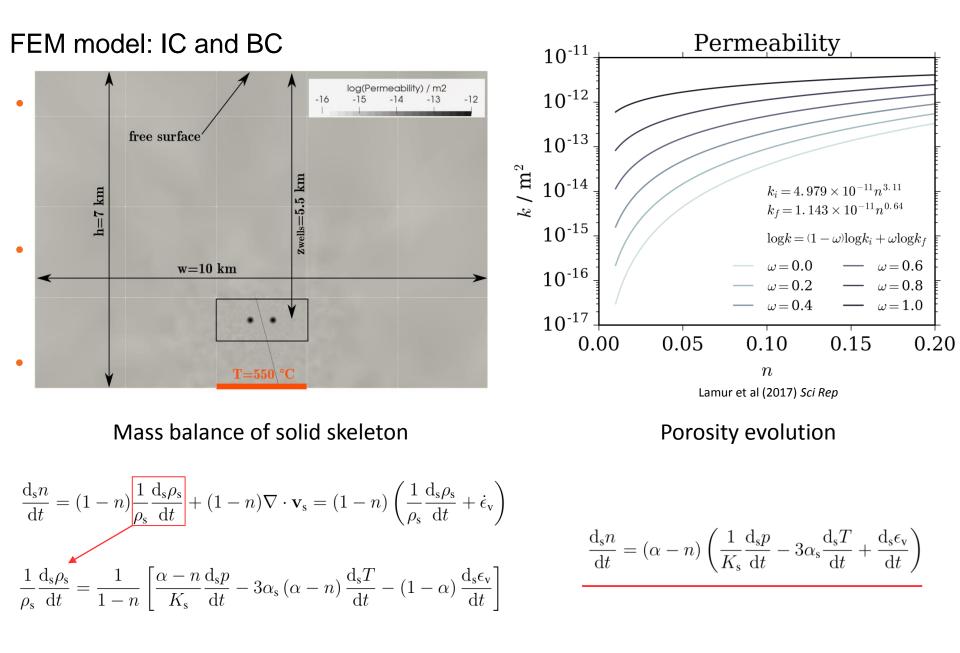
OPEN

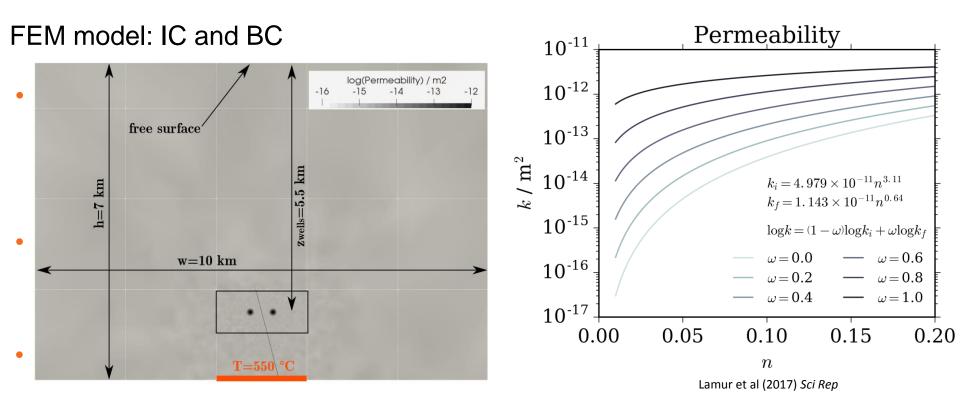

The risks of long-term re-injection in supercritical geothermal systems

Francesco Parisio ^{1,2}*, Victor Vilarrasa ^{3,4}, Wenqing Wang¹, Olaf Kolditz^{2,5} & Thomas Nagel ^{1,2}


https://doi.org/10.1038/s41467-019-12146-0

Schematic model of ESGS doublet of production/injection


Conceptual model


Finite element model and permeability-porosity relationship

Finite element model and permeability-porosity relationship

Finite element model and permeability-porosity relationship

Model parameters

Parameter	Rock mass	Fault	Units
n_0	0.01	0.05	-
$ ho_{ m s}$	2700	2700	${ m kg}~{ m m}^{-3}$
$\alpha_{\mathbf{s}}$	1×10^{-5}	1×10^{-5}	K^{-1}
$c_{\rm s}$	950	950	$J \ kg^{-1} \ K^{-1}$
$\lambda_{ m s}$	3	3	$W m^{-1} K^{-1}$
E	60	20	GPa
ν	0.25	0.25	-
α	0.8	1.0	-
ϕ	30.0	30.0	0
$\sigma_{ m c}$	200.0	0.0	MPa

Porosity evolution

$$\frac{\mathrm{d}_{\mathrm{s}}n}{\mathrm{d}t} = (\alpha - n) \left(\frac{1}{K_{\mathrm{s}}} \frac{\mathrm{d}_{\mathrm{s}}p}{\mathrm{d}t} - 3\alpha_{\mathrm{s}} \frac{\mathrm{d}_{\mathrm{s}}T}{\mathrm{d}t} + \frac{\mathrm{d}_{\mathrm{s}}\epsilon_{\mathrm{v}}}{\mathrm{d}t} \right)$$

Model equations for THM processes in porous media

System of partial differential equations

Energy conservation

$$(c\rho)_{\rm m}\frac{\mathrm{d}_{\rm s}T}{\mathrm{d}t} - \nabla \cdot (\boldsymbol{\lambda}_{\rm m}\nabla T) + \rho_{\rm w}c_{\rm w}\mathbf{v}\cdot\nabla T = Q_{\rm T},$$

$$(c\rho)_{\rm m} = n \,\rho_{\rm w} \,c_{\rm w} + (1-n)\rho_{\rm s} \,c_{\rm s}$$
$$\boldsymbol{\lambda}_{\rm m} = n\lambda_{\rm w} \mathbf{I} + (1-n)\boldsymbol{\lambda}_{\rm s}$$

Specific heat and thermal conductivity of porous medium

Mass conservation

$$\begin{pmatrix} n\beta_{\rm w} + \frac{\alpha - n}{K_{\rm s}} \end{pmatrix} \frac{{\rm d}_{\rm s}p}{{\rm d}t} - \left[n\alpha_{\rm w} + 3\left(n - 1\right)\alpha_{\rm s} \right] \frac{{\rm d}_{\rm s}T}{{\rm d}t} + \nabla \cdot \mathbf{v} + \alpha \dot{\epsilon}_{\rm v} = Q_{\rm H}$$
$$\mathbf{v} = -\frac{\mathbf{k}}{\mu_{\rm w}} \left(\nabla p - \rho_{\rm w} \mathbf{g} \right) \quad \textbf{Darcy's law}$$

Momentum conservation

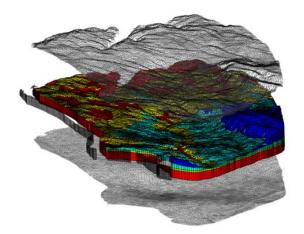
Open source FEM solver: OpenGeoSys

Free, multi-platform software for the scientific modelling of coupled THMC processes in fractured porous media.

Available on GitHub https://github.com/ufz/ogs

Equations of state (EOS): IAPWS-IF97 on the free library **freesteam** http://freesteam.sourceforge.net/

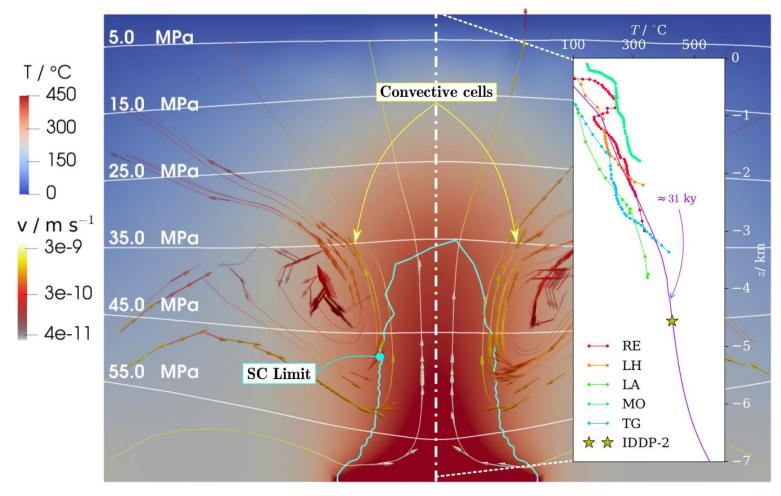
OpenGeoSys (OGS) is a scientific open source project for the development of numerical methods for the simulation of thermo-hydro-mechanical-chemical (THMC) processes in porous and fractured media. Current version is OpenGeoSys-6 which is documented on this page. For information about OpenGeoSys-5, see its dedicated section. OGS been successfully applied in the fields of contaminant hydrology, water resources and waste management, geotechnical applications, geothermal energy systems and energy storage.


COMPREHENSIVE PRE-PROCESSING TOOLS

A wide range of helper tools exist to get your model up and running with OpenGeoSys.

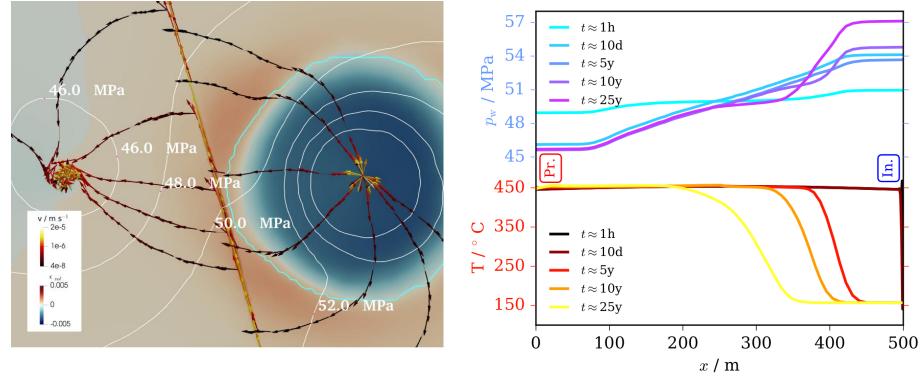
Convert your existing data sets into appropriate OGS data formats and structures.

Create meshes approximating geometrically the domain of interest. Analyze mesh quality, cleanup the mesh or adding layers to it.


Parametrize the model with material parameters, boundary conditions and source terms.

SEE DOCS

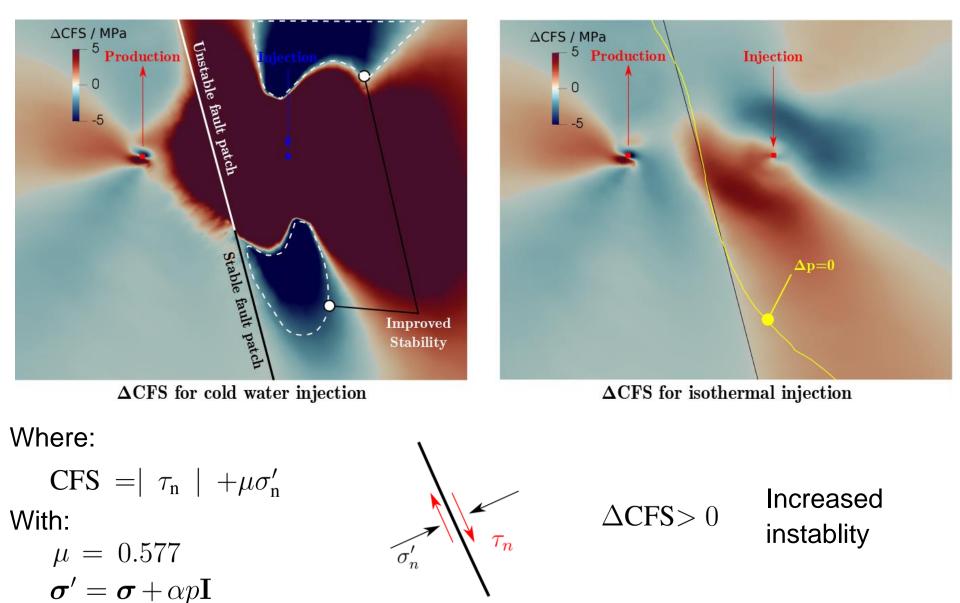
Density-driven flow forms convective cells in the reservoir


Initial conditions

RE: Reykjanes (ISL), Marks et al. (2015) Chem Geol, LH: Los Humeros (MEX), Luviano et al. (2015) WGC, LA: Larderello (ITA), Ebigbo et al. (2016) Geoth Ener, MO: Mofete (ITA), Carlino et al. (2016) Ren Ener, TG: The Geysers (USA), Garcia et al. (2016) Geotherm, IDDP2: Reykjanes (ISL), Fridhleifsson et al. (2017) Sci Drill

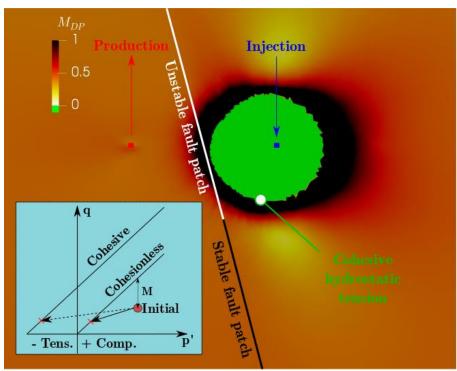
Pressure and temperature change follow different timescales

Geothermal doublet


After 25 years of injection:

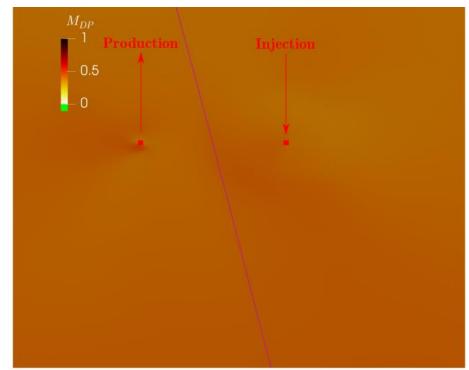
- a. Liquid front has reached the fault
- b. Quenched area contracts
- c. Fault shows preferential flow paths

Thermal-advective process is slower than pore pressure diffusion


Cooling-induced stress controls fault stability

Coulomb Failure Stress (CFS)

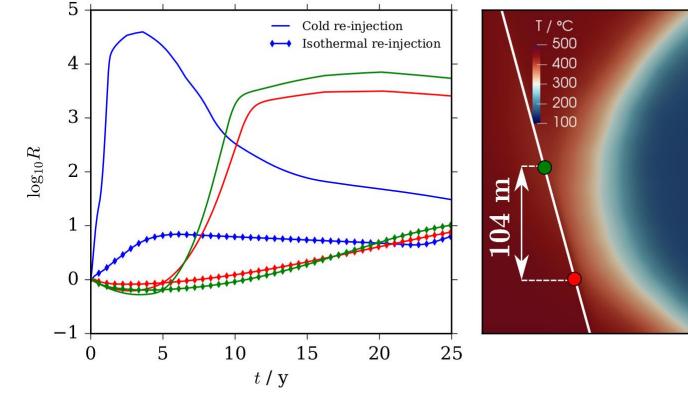
Tensile failure can occur during cold water re-injection

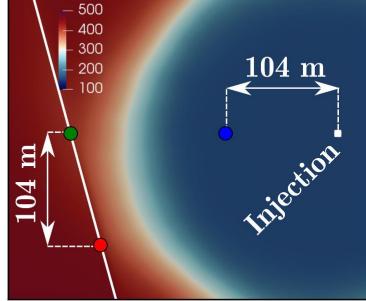

Drucker-Prager failure

Drucker-Prager strenght for cold water injection

Where:

$$q_{\rm dp} = \frac{6\sin\phi}{3-\sin\phi} \left(-\sigma'_{\rm m}\right) + \frac{6c'\cos\phi}{3-\sin\phi}$$
$$M_{\rm DP} = q_{\rm dp}/q_{\rm s}$$


Drucker-Prager strenght for isothermal injection


With:

$$\sigma'_{\rm m} = \operatorname{tr} (\boldsymbol{\sigma}') / 3$$
$$\boldsymbol{s} = \boldsymbol{\sigma}' - \mathbf{I} \sigma'_{\rm m}$$
$$\boldsymbol{q} = \sqrt{3 (\boldsymbol{s} : \boldsymbol{s}) / 2}$$

Seismicity is enhanced by cooling and delayed in the fault

Rate of seismic production

Where:

$$\dot{R} = R/t_{\rm a} \left(\dot{\tau}_{\rm c}/\dot{\tau}_0 - R \right)$$

With:

$$\begin{split} \dot{\tau}_0 &= 1 \times 10^{-3} \, \mathrm{MPa} \, \mathrm{yr}^{-1} \\ \dot{\tau}_{\mathrm{c}} &= \mid \tau_{\mathrm{n}} \mid +\mu \sigma'_{\mathrm{n}} \\ t_{\mathrm{a}} &= A \sigma'_{\mathrm{n}} / \dot{\tau}_0 \end{split}$$

Seagall and Lu (2015) J Geoph Res

The size of the mobilized fault patch is controlled by cooling

Fault-patch mobilization

Conclusions, limitations and further research

- Cooling controls seismicity in ESGS
- Time in seismicity delay is due to advection
- Fault location and re-injection temperature dominate the stability
- Tensile fractures are likely to occur
- Complex THM numerical analyses for reservoir management

ACKNOWLEDGEMENTS

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 727550

"The content of this presentation reflects only the authors' view. The Innovation and Networks Executive Agency (INEA) is not responsible for any use that may be made of the information it contains."

Contribution funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) project number PA 3451/1-1

