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The exhumation of peridotite rocks in oceanic transform zones passes by the rheo-

logical transition between the ductile-brittle deformations until the complete empla-

cement in the oceanic lithosphere. The São Pedro and São Paulo Archipelago 

(SPSPA), located about 1000km from the Brazilian coast, positioned approximately 

1° north of the Equator Line (Fig.1A,B). Ten isles compose the archipelago with a 

total exposed area of 17 km². Those isles record the deformational products of 

ductile, brittle and rocks/fluid interaction. The deformational stages are related 

to the transpressional and transtensional geodynamics of São Paulo Transform 

Fault(Fig 1B).The ductile-brittle fabrics were observed in a multiscale context in 

this work (Barão et al., 2020).

Figure 1 - Location of the St. Peter and St. Paul Archipelago (SPSPA) in the Mid-Atlantic Zone. (A) Location of the SPSPA,

 with indication of the São Paulo (SPTF) and the Romanche Transform Faults (modified from Sandwell and Smith, 1997); 

(B) Shaded bathymetric relief map of the SPTF where it intersects the SPSPA (modified from Maia et al., 2016). 

The SPSPA is composed by ultramylonite peridotite with mylonitic foliation (Fig. 2). 

On these rocks also observes cataclastic flow, this fabric are sectioned by fractures 

networks some of those are filled by sediments.The most prominent structure 

observed was the primary structure of peridotite rocks, it is mylonitic foliation 

(Fig.2). This foliation has anastomosed fabric, marked by the development of 

 

Figure 2 - Geological map (modified from Campos et al., 2003) and geological cross-section A-A' of the Belmonte, Challenger 

and Northeast islets of the SPSPA; and lower-hemisphere, equal-area projections, indicating the trending of the mylonitic 

foliation and the cataclastic orientation in the SPSPA.

Field mapping allowed us to estimate the main defor-

mational domains that the rocks of the SPSPA 

passed through (Fig. 3A). These domains 

involve the abrupt transition from ductile to the brittle

regime, initially forming peridotite mylonites to ultra-

mylonites (Fig. 3B), and later cataclasites and 

breccia faults (Fig. 3C).

Mylonitic Domain

Figure 3 - (A)Tectonic domains; (B)Mylonitic Domain; (C)Cataclastic Domain.
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Figure 4 - (A) Overview of the ultramylonites to mylonites bands;

(B) Opx porphyroclast with kink structure and Cpx exsolution 

lamellae; (C) Opxporphyroclasts bypassed by mylonite foliation. 

It is observed the formation of subgrains associated to Mag and 

Op minerals; (D) Amp bypassed by the mylonitic foliation; 

(G) Fluid Reaction Band.

Figure 5 - .(A)Domino faults formed; (B)Serpentine gash veins for-

med by the crack-seal process (Srp2); (C)Type Srp3, with very micro

crystals of serpentine (1 to 5µm) (D)Type Srp4, with granular-shaped 

serpentine infill and disoriented pattern. 

It’s observed in the very fine mylonitic matrix, composed 

of minerals such as a Ol, Opx, Spl and Amp (Fig. 4A-E);

The Ol and Opx porphyroclasts indicate their predominan-

tly left-lateral kinematics. Also the crystals exhibit 

pressure shadows (Fig.4A); 

The Opx internally exhibits deformation lamellae (Fig. 4D,

E), with Cpx exsolution lamellae and kinks (Fig. 4D), 

also subgrains of Opx may occur (Fig. 4E); 

Reacting layer intercalated with the mylonitic levels, 

marks fluid penetration may have been facilitated by the 

mylonitic foliation (Figs. 4A,G); 
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Fluids interact with the rock, forming Amp, Mag, and oxi-

des (Fig. 4G). Locally, there is the formation of 

porphyroblasts of amphibole without orientation (Fig. 4G).

Marked by cataclastic orientation and cataclasites 

associated with serpentine (Fig. 2,3). The serpentine

fill fractures  (Fig. 3A), which may divides the rock 

into serpentinite bands and bands with elongated 

peridotite fragments (Fig.3C);

Also observed angular-shaped, asymmetrical domino 

boudins (Spr2) along a shear band (Fig. 5A) indicate 

right-lateral kinematic;

The serpentine-filled microfaults (Fig. 5C -  Spr3) have 

different generations overlapping each other. The 

serpentine gashveins take place (Fig. 5B);

The last vein phase (Srp4) crosscuts all previously for-

med phases (Fig. 5D). These veins are 100 to 200μm

wide and the crystals are coarser-grained. The morpho-

logy is that of granular-shaped and isotropic crystals  

Brecciated domain is highlighted by peridotite 

fragments and carbonate cement that fill previous 

structures;

Sedimentary bodies are elongated and randomly 

arranged (Fig. 6A); they are composed of conglo-

merate with peridotite clasts, shell fragments 

bounded by a carbonate-rich matrix;

Shear zones  seem to have facilitated the sedimen-

tary bodies formation (Fig. 7B).

Figure 6 - (A) Drone photographs, outlining some sedimentary bodies. Lower-

hemisphere, equal area projection indicating the direction of sedimentary bodies

(B) Zoom area of the strike-slip fault zone with a oblique component, alongside 

extensional shears oblique to the main fault zone.  
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Two different phases of carbonate veins idetifyed.

They were named Cb1 and Cb2 (Fig. 8) due to 

their temporal and crosscutting 

Figure 7 - (A) Cb1 veins marked by gash veins with right-lateral kinematics; 

(B) Cb2 veins, associated with fluid brecciation process, creating fragments 

of peridotite. 

First phase (Cb1) directly crosscuts serpentinite 

veins, in some cases forming gash veins with the 

indication of right-lateral kinematics can be classi-

fied as syntaxial  

Cb2 veins, crosscut the other veining phases

observed in the SPSPA (Figs. 8B and C). Those 

veins are related to carbonate fluids, facilitating the

brecciation process and formation of angular 

fragments (Fig. 7B).

Predominance of strike-slip faults (Fig.2,8), associated 

with oblique components. The fault planes are mainly 

related with sedimentary bodies;

Kinematic indicators are right-lateral (Fig. 8A,B). These 

structures are linked to EW-directed fault planes (Fig. 2); 

Locally, these features can produce breccia faults

(Fig. 8C), and not associated with the cataclastic domain; 

Fault plane data collected in the field and processed by 

the straight dihedral-angle method suggest that the main 

tensor has an approximate direction of NW-SE and a 

marked extension trending NE-SW (Fig. 8D)

Figure 8 - (A) and (B) Fault planes observed in sedimentary bodies

(C) Breccia fault (15cm); (D)  straight dihedral-angle method, showing 

the two different main shortening direction 

Figure 9 - Table of microstructures and structures observed in peridotites in 

the SPSPA. These structures describe the ductile-brittle transition in the archipelago.

Figure 10 - Chronology of the formation of serpentine and carbonate phases in the SPSPA and their relation to the ductile-brittle transition.

The transition has been demonstrated in deformed rocks along shear 

high-angle zones and locally associated with hydrothermal fluids (Fig.9)

Rocks were affected by the ductile to semi-brittle defor-

mation, which caused intense recrystallization of minerals

such as Ol and Opx and the formation of ultramylonitic 

features, associated with temperatures ranging between 

700-800°C;

The continuous and rapid uplift led to the superpo-

sition of deformation mechanisms, with reactivation 

of pre-existing structures and predominance of 

semi-brittle to brittle deformation;

The transition to the semi-brittle regime leads to the formation of Srp2 and Spr3 veins (Fig. 10). The Srp2 veins tend 

to run parallel to the mylonitic foliation, isolating fragments of peridotite and olivine crystals from the rock matrix;

Srp4 veins (Fig. 10) show a fracture-filled with fluid, evidencing continuous deformation, without kinematic varia-

tion during crystal growth, corresponding to the complete hydrothermal system opening

The last phase of serpentinization (Srp4) are time-equivalent to the carbonatation phases (Cb1 and Cb2) (Fig.10)

and marks a progressive change to the carbonatation process predominance and peridotite exhumation 

to the surface.

The SPSPA evolutionary history shows different deformational styles 

during peridotite exhumation, varying from ductile to brittle regimes 

and it’s resumed in four deformational stages (Fig.11):

Stage I: comprises the ductile to semi-brittle deformational 

phases (Fig.10) of the SPTF,involving transtension to trans-

pression. The mylonitization between the temperatures 

of ~700 – 800°C, causing Ol and Opx recrystallization;

Stage II: refers to the semi-brittle to brittle transition of 

rocks in the SPSPA, with the formation of cataclastic 

features  and it is mainly associated with cataclastic 

flow process;

Stage III: marks deformation under brittle regime 

(Fig. 11), where we observe the presence and intensi-

fication of faults,

Stage IV: final phase of deformation which faults and fractures oriented E-W

 and filled with carbonate-rich fluids. The direction of NW-SE of their main tensor

 is compatible with the current compressive field observed in earthquakes nearby SPSPA. 

 

Figure 11 - Evolutionary models of the deformation of the SPSPA (I) to (IV), marking the

ductile-brittle deformational transition.
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These structures are orientated NNW-SSE

(Fig. 2) directions and it is penetrative over 

the isles. The mylonitic foliation (Fig. 3B) 

oriented to NE30-20W, with different 

orientations in the SPSPA isles (Fig. 2). 

Also, the foliation is gently folded with 

axis oriented to the northeast (Fig. 2).

 

serpentine parallel to the foliation. 
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