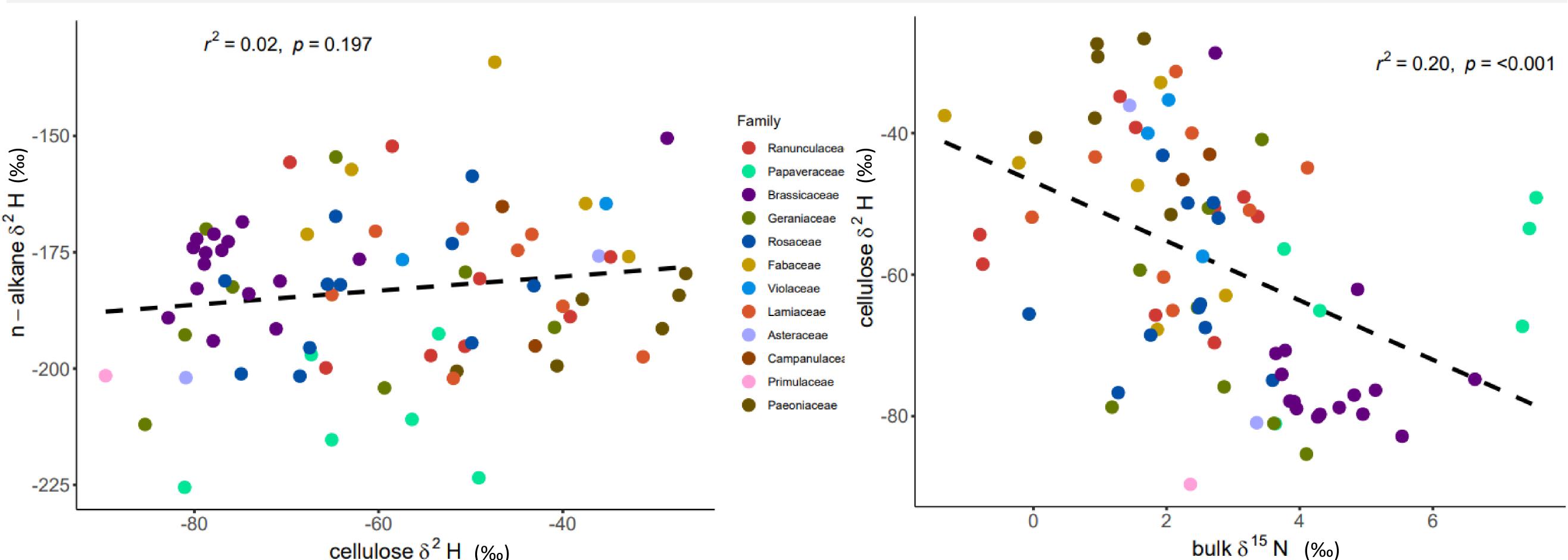

Variation in hydrogen stable isotopes in cellulose and n-alkanes: phylogenetic signal and related traits

University of Basel

Background

Hydrogen (H) stable isotope analysis of specific plant organic compounds has become of interest as a tool for ecological, environmental and palaeoclimatological studies. Aside from the influence of leaf water evaporative enrichment on the $\delta^2 H$ composition of organic compounds, hydrogen isotope fractionation occurs during carbon metabolism in the plant. Using a large set of species in the eudicot clade, we explored the variation of δ^2 H in cellulose and n-alkanes, and its relationship with phylogeny and other plant traits with the aim of identifying the source of species-specific $\delta^2 H$.


Jochem Baan, Meisha Holloway-Phillips, Ansgar Kahmen

Department of Environmental Sciences – Botany, University of Basel, Switzerland

Primulaceae	
Solanaceae	Figure 1: $\delta^2 H_{n-alkane}$ shows a
Lamiaceae	strongphylogeneticsignal(Pagel's $\lambda = 0.855;$ $p<0.001$),meaningthatcloselyrelatedspecieshavesimilar $\delta^2 H_{n-alkane}$
Scrophulariaceae Plantaginaceae	values. The <i>Papaveraceae</i> family in particular shows more depleted
Asteraceae	n-alkane $\delta^2 H$ values, which provides a clear target for further investigation of the drivers of species $\delta^2 H_{n-alkane}$ variation.
Campanulaceae	
Amaranthaceae Caryophyllaceae	
Brassicaceae	
Geraniaceae	
Fabaceae	
Rosaceae	Acknowledgements Svenja Förster, Daniel Nelson and Jurriaan de Vos
Violaceae Paeoniaceae	Funding: HYDROCARB - ERC Consolidator Grant to A. Kahmen
Papaveraceae	Contact: jochem.baan@unibas.ch
	References:
Ranunculaceae	1. Mariotti et. al. Plant Physiol. 69, 880–884 (1982).
	2. Foyer et al. Plant Physiol. 104, 171–178 (1994).
	3. Augusti et. al New Phytol. 172, 490–499 (2006).

Objectives

- 1) Explore the variability of cellulose and n-alkane $\delta^2 H$ values in plants that grow in a common environment and detect if the observed variability is specific for taxonomic groups (Fig. 1)
- 2) Determine if n-alkane and cellulose δ^2 H values covary across species within a location (Fig. 2)
- 3) Explore (integrated) physiological traits that can help explain δ^2 H variation (Fig. 3)

cellulose $\delta^2 H$ (‰)

Figure 2: There was no relation between $\delta^2 H_{n-alkane}$ and Figure 3: Higher $\delta^{15} N_{bulk}$ was related to more $\delta^2 H_{cellulose}$ across different species, even though both depleted $\delta^2 H_{cellulose}$. If $\delta^{15} N$ values are interpreted in compounds are synthesized in the same leaf water pools. terms of nitrate reductase activity (NRA), higher $\delta^{15}N$ Therefore variation in leaf water δ^2 H through evaporative values would be associated with higher NRA¹. NRA is enrichment is likely not a main driver for organic compound $\delta^2 H$ associated with N-assimilation, the extent of which can differences between species within a location. influence C-allocation². It is surmised that ²H enrichment of sugars occurs via post-photosynthetic exchange reactions with water, where the greater the futile cycling of metabolites, the greater the opportunity for exchange³.

Conclusions

- 1) δ^2 H values show a strong variation within the eudicot clade (132‰ range in n-alkane δ^2 H) and δ^2 H_{n-alkane} is strongly related to phylogeny
- 2) Cellulose and n-alkane δ^2 H values do not co-vary across species within a location 3) Cellulose δ^2 H is related to bulk δ^{15} N, showing a possible link to nitrogen assimilation

© Authors. All rights reserved