
Introduction

The cosmogenic radionuclides provide a complementary method compared to traditional geomagnetic studies.

Highlights

- We present a new continuous
 ¹⁰Be record from the NEEM ice core for 11.7-108 ka
- We assess and reduce the climate signal in the cosmogenic records by a multi-linear correction method
- The "climate correction" reconstructions (¹⁰Be_{mean}/³⁶Cl_{mean}) lead to an improved agreement with independent reconstructions compared to simply using radionuclide fluxes

Fig 1. Comparison of averaged climate corrected records ¹⁰Be_{mean}/³⁶Cl_{mean}-based Geomagnetic Dipole Moment (GDM) reconstructions with the GGF100k ^[1] and PISO1500 ^[2]. The RMSE (Root Mean Square Error) is for ¹⁰Be_{mean}/³⁶Cl_{mean} based GDM with PISO1500 (purple) and GGF100k (red) while in the bracket is for uncorrected ¹⁰Be/³⁶Cl flux based GDM. The shaded area presents its 2 standard error based on uncertainties in the average GDM

Assess/Reduce the Climate Signal

The ¹⁰Be/³⁶Cl records from ice cores suggest a changing relationship with climate proxies, reflecting a mixture of climate and production signal on data that require separation to evaluate the changes in the GDM

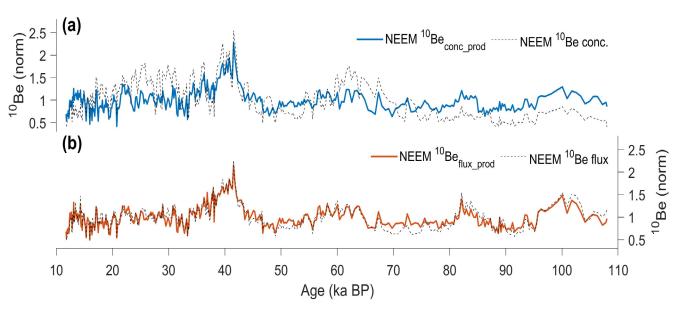
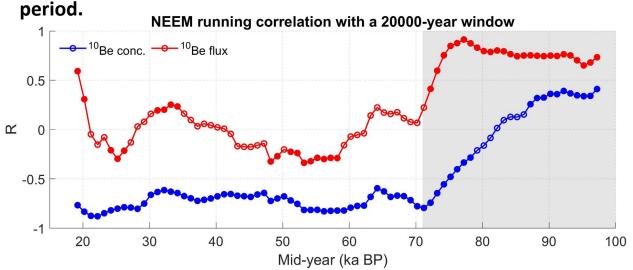
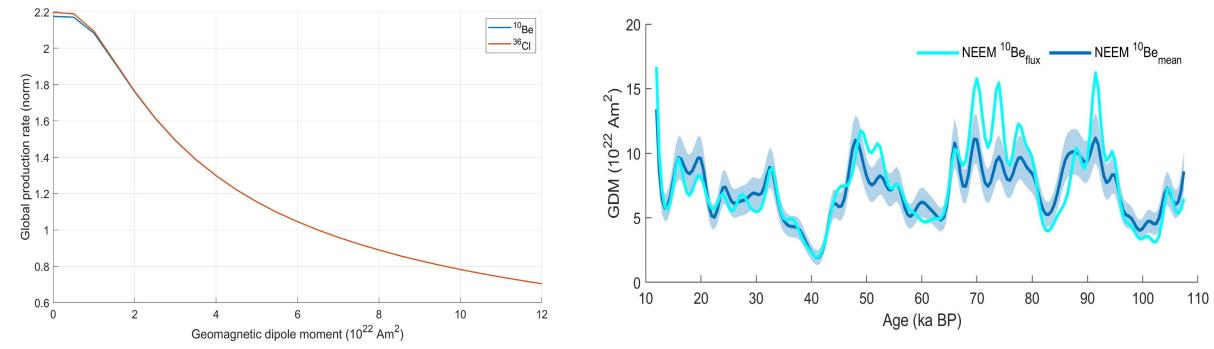



Fig 3. An example of NEEM climate-corrected records with the original records: (a) ${}^{10}Be_{conc_{prod}}$ with concentration (b) ${}^{10}Be_{flux_{prod}}$ with flux

Fig 2. An example of moving correlation between NEEM accumulation rates and ¹⁰Be concentration/flux. The shaded area indicates MIS5



To reduce the climate bias, we created the "climate corrected" records

- First, construct multi-linear regression between climate proxies and cosmogenic radionuclides data (e.g. ¹⁰Be)
- Then, subtract this model dependency from the ¹⁰Be, and denote the residuals as the climate corrected records (¹⁰Be_{flux_prod} and ¹⁰Be_{conc_prod})
- We create the $^{10}\text{Be}_{mean}$ by averaging the $^{10}\text{Be}_{flux_prod}$ and $^{10}\text{Be}_{conc_prod}$

¹⁰Be Conversion to Geomagnetic Dipole Moment

By assuming that climate corrected ¹⁰Be is proportional to the global changes in ¹⁰Be production rate, we can transfer the ¹⁰Be_{mean} to the past GDM changes according to the production relationship^[3]

Figure 4. Dependence of relative ¹⁰Be and ³⁶Cl global average production rate on GDM

Figure 5. An example of GDM reconstruction based on averaged climate-corrected NEEM ¹⁰Be records (NEEM ¹⁰Be_{mean}) and based on ¹⁰Be flux (¹⁰Be_{flux}).

UNIVERSITY

Reconstruction of the geomagnetic dipole moment variation for the last glacial period based on cosmogenic radionuclides from Greenland ice cores

Minjie Zheng¹, Anna Sturevik-Storm², Andreas Nilsson¹, Florian Adolphi^{1,3}, Ala Aldahan^{2,4}, Göran Possnert⁵, Raimund Muscheler¹

¹ Department of Geology, Lund University, Lund, Sweden

² Department of Earth Sciences, Uppsala University, Uppsala, Sweden

³ Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, Bern, Switzerland

⁴ Department of Geology, United Arab Emirates University, Al Ain, United Arab Emirates

⁵ Tandem Laboratory, Uppsala University, Uppsala, Sweden

[References]

[1] Channell, J.E.T., Xuan, C., Hodell, D.A., 2009. Stacking paleointensity and oxygen isotope data for the last 1.5 Myr (PISO-1500). Earth and Planetary Science Letters 283, 14-23.

[2] Panovska, S., Constable, C.G., Korte, M., 2018. Extending global continuous geomagnetic field reconstructions on timescales beyond human civilization. Geochemistry, Geophysics, Geosystems.

[3] Poluianov, S.V., Kovaltsov, G.A., Mishev, A.L., Usoskin, I.G., 2016. Production of cosmogenic isotopes ⁷Be, ¹⁰Be,¹⁴C, ²²Na, and ³⁶Cl in the atmosphere: Altitudinal profiles of yield functions. Journal of Geophysical Research: Atmospheres 121, 8125-8136.

Follow me in the ResearchGate for the update