A Catalogue of Coronal Mass Ejections Observed by the Heliospheric Imagers throughout the STEREO Mission

D. Barnes ${ }^{1}$, J. Davies ${ }^{1}$, R. Harrison ${ }^{1}$, \& the HELCATS team
(1) STFC, Rutherford Appleton Laboratory, UK;

Overview

- An introduction to STEREO and HI
- An explanation of CME tracking methods and geometric models applied in order to determine kinematic properties
- Results from single-spacecraft models
- Results from stereoscopic models
- A comparison of the results from single-spacecraft models and those from stereoscopic models
- Summary

The STEREO Heliospheric Imagers

STEREO/HI-1A 2019-11-07 15:29UT

- Two spacecraft launched in 2006 with identical remote sensing instruments
- We have observed 1000s of CMEs over an entire solar cycle
- STEREO-A is still transmitting data

Identifying CMEs in HI

CMEs in HI

HELCATS

Harrison et al. 2018
http://www.helcats-fp7.eu/

CORSET

Vourlidas et al. 2017
solar.jhuapl.edu/Data-Products/ COR-CME-Catalog.php

LASCO CDAW

Yashiro et al. 2004
cdaw.gsfc.nasa.gov/ CME_list/

Tracking CMEs in HI

Davies et al. 2012

$\mathrm{HI}-\mathrm{B}\left(\mathrm{PA}=260^{\circ}\right)$

CME Tracking

Results - Single spacecraft models

Results - Stereoscopic models

- A total of 274 CMEs were observed by both spacecraft simultaneously
- A subset of 151 are tracked using SSSE method

- Few CMEs are seen to be significantly accelerating
- 77% are found to have positive acceleration
- CME deflections are also observed but many are found to be unphysical

Model Comparison - CME speeds

Model Comparison - CME Propagation Directions

0° half-width

30° half-width

30° half-width

90° half-width

Model Comparison - CME Propagation Directions

- Tracking CMEs using a single spacecraft produces a significant bias in the direction of propagation
- This bias is highly dependent on the spacecraft separation angle
- These are caused by the limited range of the $\mathrm{HI}-1 \mathrm{FOV}$ and by incorrect assumptions included in the single spacecraft models (constant speed, half-width)

Summary

- A catalogue of >2000 coronal mass ejections has been compiled using observations from the Heliospheric Imagers on the two STEREO spacecraft
- This began in 2008 and now spans well over 11 years, covering an entire solar cycle
- To these CMEs we apply single-spacecraft and stereoscopic modelling to determine kinematic properties (speeds, directions and launch times)
- The results are found to correlate well with existing catalogues and with established solar-cycle behaviour
- A subset of 151 CMEs, observed by both spacecraft, has been modelled using stereoscopic methods
- Single-spacecraft models found to be biased at estimating CME propagation directions and this bias is a function of spacecraft position

