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Introduction
Synthetic dynamic rupture database is generated by Monte Carlo random sampling of
the generally heterogeneous slip-weakening paramaters on the vertical strike-slip fault.
The synthetic seismograms on a set of phanthom stations are compared with the
prescribed ground motion prediction equations (GMPEs) based on NGA-West2
database (Boore et al., 2014a) in terms of the rotD50 measure of 5% damped
acceleration response spectra SA at periods 0.5− 5 s. Only the events that statistically
follow the GMPEs in terms of median and variability are accepted into the database.
The resulting database is used to analyze the different stress drop measures
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and inspect their relations, in particular in terms of their variabilities.
The presented results are extension to Gallovič and Valentová, 2020b.

aD. M. Boore et al. “NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes”. In:
Earthquake Spectra 30.3 (2014), pp. 1057–1085.

bF. Gallovič and L. Valentová. “Earthquake Stress Drops From Dynamic Rupture Simulations Constrained by Observed Ground
Motions”. In: Geophysical Research Letters 47.4 (2020), e2019GL085880. doi: 10.1029/2019GL085880.

http://dx.doi.org/10.1029/2019GL085880


Dynamic rupture modeling

We employ a framework similar to Bayesian dynamic source inversion in
Gallovič et al, 2019a1 and 2019b2.The dynamic rupture propagation is solved
numerically utilizing newly developed FD3D TSN code by Premus et al., 20203

on a 100 m grid.

We assume strike-slip vertical fault 36× 20 km.
The dynamic model parameters, treated
independently on the grid 1.4× 1.2 km, are

I prestress τi
I linear slip-weakening friction parameters

I characteristic slip-weakening distance Dc
I friction coefficient drop µs − µd .

Synthetics up to 5 Hz are calculated assuming a
1D velocity model on a regular grid of phantom
stations.

Linear slip weakening friction law.

Map view of the fault (red line) and stations (blue

inverted triangles).

1F. Gallovič et al. “Bayesian Dynamic Finite-Fault Inversion: 1. Method and Synthetic Test”. In: Journal of Geophysical Research:
Solid Earth 124.7 (2019a), pp. 6949–6969.

2F. Gallovič et al. “Bayesian Dynamic Finite-Fault Inversion: 2. Application to the 2016 Mw 6.2 Amatrice, Italy, Earthquake”. In:
Journal of Geophysical Research: Solid Earth 124.7 (2019b), pp. 6970–6988.

3J. Premus et al. “FD3D TSN: Fast and simple code for dynamic rupture simulations with GPU acceleration”. In: Seismological
Research Letters (2020).



Markov chain Monte Carlo sampling

I Random walk on dynamic model space to
propose new model

I The proposed model is tested against the
apriori constraints

I Dynamic parameters within predefined
bounds

I All nuclueating points within 3km radius
I Mean nucleation overstress less than 1 MPa

I Dynamic simulation performed, discard models
with

I Mw < 5.5
I Rupture area reached the fault size
I Rupture still evolving after the end of

simulation time (20 s)

Modify dynamic 
parameters following 

proposal PDF

Do the model parameters 
satisfy constraints?

Parameter constraints:
ź Parameter bounds
ź Patch-like nucleation
ź Nucl. overstress < 1MPa

Run dynamic rupture 
simulation

YES

NO

Does the rupture model 
satisfy constraints?

NO

SA at 10 periods
between 0.5 - 5s

Calculate waveforms and 
evaluate misfit. Does it 
pass the M-H criterion?

YES

NO

Accept the model

(M-H: Metropolis-Hastings)

YES

Rupture constraints:
ź M >5W

ź Rupture smaller than the 
fault size and shorter  
than the simulation time

Next 
step



Posterior PDF

Posterior probability density function (PDF) in Bayesian framework

p(m|d) ∼ pprior(m)L(d |m),

where L(m) is the so-called likelihood function describing the data fit by the (dynamic)
model. L(m) ∼ exp(−S(m)) with S(m) misfit between synthetic and observed data
calculated as

S(m) ∼ (dobs − dsynth(m))TC−1(dobs − dsynth(m)).

The mixed model covariance matrix C, for a single event has simplified form
C = σ2I + τ 21, where σ denotes inter-event variability and τ the intra-event (or
between-event) variability. Note, that the observed data for our problem consist of the
adopted GMPEs.
Acceptance of the proposed model is given by the Metropolis-Hastings criterion,
denoting α as the ration between the posterior PDF between the proposed and the
previous (original) model, the model is accepted randomly with probability min(1, α).
To increase the efficiency of the MCMC sampling, we employed parallel tempering
algorithm (Sambridge, 2013a). However, the sampling of the uncorrelated parameters
by the random walk may become inefficient and lead to very similar models, therefore
we crosscorrelated the resulting seismograms for the events and discarded models with
correlation coefficient > 0.8.

aM. Sambridge. “A Parallel Tempering algorithm for probabilistic sampling and multimodal optimization”. In: Geophysical Journal
International 196.1 (2013), pp. 357–374.



Posterior PDF of the resulting database
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Reponse spectral accelerations for selected periods, for all events and all stations,
normalized to Mw = 6.5. The prediction by Boore et al., 2014a, is shown by full line,
with total variability shown by dashed lines.

aD. M. Boore et al. “NGA-West2 Equations for Predicting PGA, PGV, and 5% Damped PSA for Shallow Crustal Earthquakes”. In:
Earthquake Spectra 30.3 (2014), pp. 1057–1085.



Synthetic event database
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The database comprises events
with different magnitudes that
follow the basic scaling
relations found in real events.
Most of the ruptures nucleate
from the same area on the fault
(to be rectified).

Scaling relations
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F. Courboulex et al. “StressDrop Variability of Shallow Earthquakes Extracted
from a Global Database of Source Time Functions”. In: Seismological Research
Letters 87.4 (2016), pp. 912–918
P. Somerville et al. “Characterizing Crustal Earthquake Slip Models for the
Prediction of Strong Ground Motion”. In: Seismological Research Letters 70.1
(1999), pp. 59–80
P. M. Mai and G. C. Beroza. “Source Scaling Properties from
Finite-Fault-Rupture Models”. In: Bulletin of the Seismological Society of
America 90.3 (2000), pp. 604–615



Stress drop analysis

We estimated mean static stress drop directly
from dynamic rupture models and compare it
with seismologically estimated stress drops
using rupture area S , moment rate duration T
or corner frequency fc of the Brune model
fitted to moment rate spectrum, together with
their variabilities (see numbers in the left
bottom corner of each figure). The stress drop
variability estimated using the moment rate
functions is in agreement with empirical
studies, but overestimates the ”true” stress
drop variability from the dynamic models. We
attribute this discrepancy to Brune type
approximation that, albeit correctly describing
the average source properties, oversimplifies the
individual ruptures. In contrast, when
considering rupture size S , the obtained stress
drop estimates match well the ”true” static
stress drop both in terms of mean and
variability.
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Conclusion and future direction

The results obtained from the synthetic event database that was generated
using Boore’s GMPEs, confirm the previous results regarding the stress drop
variability, see also
F. Gallovič and L. Valentová. “Earthquake Stress Drops From Dynamic
Rupture Simulations Constrained by Observed Ground Motions”. In:
Geophysical Research Letters 47.4 (2020), e2019GL085880. doi:
10.1029/2019GL085880.

Future directions:

I Improve sampling algorithm of the dynamic model parameters with
prescribed covariance matrix

I Sampling of the events of specific magnitude

I Sampling of the apriori probability without imposing GMPE constraints

http://dx.doi.org/10.1029/2019GL085880
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