UiT

THE ARCTIC UNIVERSITY OF NORWAY

^{Centre for} Arctic Gas Hydrate, Environment and Climate

Changes in microbial community structure by methane fluxes at arctic cold seeps

Vincent Carrier^{1,2}, Dimitri Kalenitchenko¹, Friederike Gründger³, Mette Svenning^{1,2}

¹Department of Arctic and Marine Biology, The Arctic University of Norway, Tromsø, Norway

²Centre for Arctic Gas Hydrate, Environment and Climate, The Arctic University of Norway, Tromsø, Norway

³Department of Bioscience – Arctic Research Centre, Aarhus University, Aarhus, Denmark

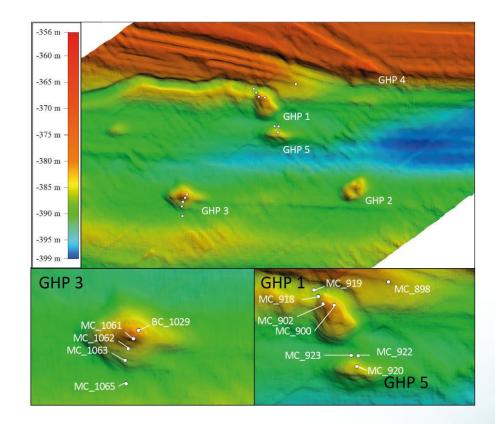
vincent.carrier@uit.no

cage.uit.no

GEOLOGICAL SURVEY OF NORWAY

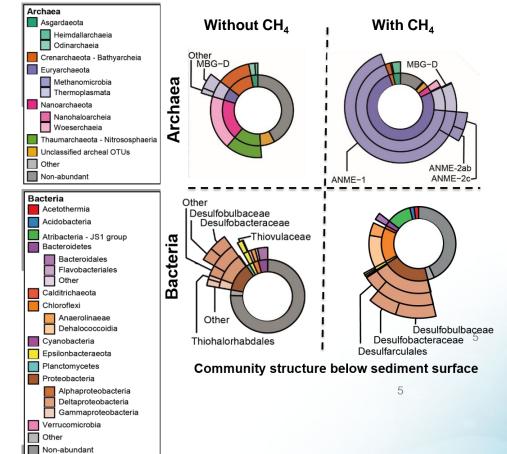
Introduction

- Cold seeps are characterized by methane (CH₄) -rich sediments¹ and this CH₄ provide a source of carbon for local foodwebs, forming biological hot spots²
- CH₄ is oxidized by different groups of methanotrophs depending of the presence of oxygen (Aerobic Methane oxidation (MOx), Bacterial groups)³, or its absence (Anaerobic Methane oxidation (AOM), Archaeal groups)⁴.
- MOx and AOM thereafter induce new available sources of energy, such as sulphide that becomes targetted by chemosynthetic bacteria⁵, organic matter degraded by some archaeal and bacterial groups⁶, and higher abundances of living organisms grazed by larger eukaryotes⁷

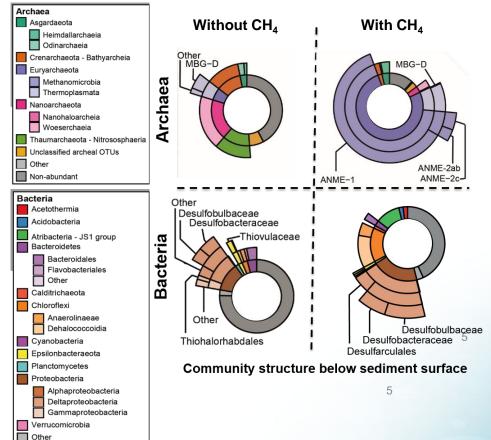

Therefore...

 we aimed for determining spatial variation of microbial community structure at cold seeps, addressing key environmental factors influencing both the prokaryotic and eukaryotic communities

Location of interest


In the Arctic Ocean, south of Svalbard, were discovered recently 5 gas hydrates bearing pingos (GHPs).

16S and 18S rDNA were amplified from sediments samples taken at 2 active and 1 inactive GHPs⁸


Results – community changes with and without CH₄

- Beta-diversity revealed community changes in the composition of bacterial and archeal groups
- Groups across the domains had strong co-occurrence, where the abundance of some archaeal groups are commonly associated to particular bacterial and eukaryotic groups (and vice versa).

Results – taxa groups influenced by CH₄

- ANME-1 was the most dominant methanotroph at all locations, and MOx bacteria were barely detected
- In addition to the sulphate-reducing bacteria, other groups, especially groups belonging to Thermoplasmata, Chloroflexi and Atribacteria, dominated CH₄-rich sediments
- In the vicinity of ANME dominated communities, bacterial groups were also dominated by sulphide oxidizers (not shown)
- Eukaryotic communities contrasted with higher abundances of heterotrophic ciliates and cercozoa, and parasitic Apicomplexa and Holozoa

Non-abundant

Conclusion

- Our study demonstrated that both prokaryotic and eukaryotic communities at arctic cold seeps formed a unique structure influenced by the distribution of CH₄ seepage
- In addition to ANME-1, CH₄-rich sediments presented the emergence of several taxonomic groups, including Epsilonbactareota, Thermoplasmata, and the heterotrophic Cercozoa and Ciliates, suggesting a complex functional microbial system supported by, or contributing to, the local oxidation of CH₄
- Manuscript is under review and will likely be published soon

References

1. Joye, S. B., Bowles, M. W., Samarkin, V. A., Hunter, K. S. & Niemann, H. Biogeochemical signatures and microbial activity of different cold-seep habitats along the Gulf of Mexico deep slope. *Deep Sea Res. Part II Top. Stud. Oceanogr.* **57**, 1990–2001 (2010).

2. Niemann, H. *et al.* Methane-Carbon Flow into the Benthic Food Web at Cold Seeps-A Case Study from the Costa Rica Subduction Zone. *PLoS One* **8**, (2013).

3. Boetius, A. *et al.* A marine microbial consortium apparently mediating anaerobic oxidation of methane. *Nature* **407**, 623–626 (2000).

4. Campbell, B. J., Engel, A. S., Porter, M. L. & Takai, K. The versatile ε-proteobacteria: Key players in sulphidic habitats. *Nature Reviews Microbiology* **4**, 458–468 (2006).

5. Zhou, Z., Pan, J., Wang, F., Gu, J.-D. D. & Li, M. Bathyarchaeota: Globally distributed metabolic generalists in anoxic environments. *FEMS Microbiol. Rev.* **42**, 639–655 (2018).

6. Takishita, K., Kakizoe, N., Yoshida, T. & Maruyama, T. Molecular Evidence that Phylogenetically Diverged Ciliates Are Active in Microbial Mats of Deep-Sea Cold-Seep Sediment. *J. Eukaryot. Microbiol.* **57**, 76–86 (2010).

7. Mau, S. *et al.* Widespread methane seepage along the continental margin off Svalbard - from Bjørnøya to Kongsfjorden. *Sci. Rep.* **7**, 42997 (2017).

8. Serov, P. *et al.* Postglacial response of Arctic Ocean gas hydrates to climatic amelioration. *Proc. Natl. Acad. Sci.* **114**, 6215–6220 (2017).

Centre for Arctic Gas Hydrate, **Environment and Climate**

CAGE – Centre for Arctic Gas Hydrate, Environment and Climate research work was supported by the Research Council of Norway through its Centres of Excellence funding scheme grant 287 no. 223259.

