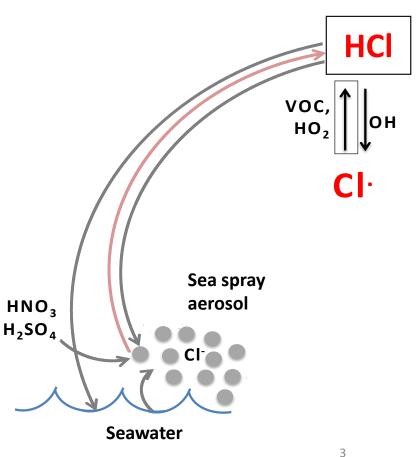
# A novel spectroscopic approach for detection of chlorine reservoir species: HCI-TILDAS

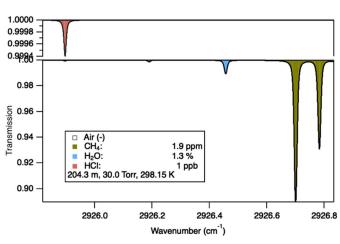
**John Halfacre**<sup>1</sup>, Pete Edwards<sup>1</sup>, Jordan Stewart<sup>1</sup>, Scott Herndon<sup>2</sup>, Joseph Roscioli<sup>2</sup>, Christoph Dyroff<sup>2</sup>, Tara Yacovitch<sup>2</sup>, Nicholas Marsden<sup>3</sup>, Thomas Bannan<sup>3</sup>, Carl Percival<sup>3,4</sup>, Hugh Coe<sup>3</sup>, Patrick Veres<sup>5</sup>, and Steven Brown<sup>5</sup>

<sup>1</sup>University of York, Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, York, United Kingdom
 <sup>2</sup>Aerodyne Research Inc, Billerica, MA, United States of America
 <sup>3</sup>University of Manchester, School of Earth, Atmospheric and Environmental Sciences, Manchester, United Kingdom
 <sup>4</sup>Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States of America
 <sup>5</sup>Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, United States of America

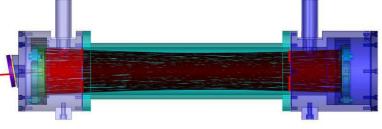

Contact: john.halfacre@york.ac.uk

## Motivation – Chlorine's Role in Oxidation

- Chlorine atom highly reactive oxidant of both organic and inorganic compounds<sup>1</sup>
- Thought to play important roles in **tropospheric oxidation**, including<sup>2,3,4</sup>
  - Volatile organic compound (VOC) oxidation (hydrocarbons)
  - Regional ozone production / ozone loss
  - Processing of reactive nitrogen
- Extent of role is highly uncertain as estimated global average concentrations span several orders of magnitude<sup>5</sup>
- Missing observational constraints of inorganic chlorine compounds prevents accurate determination of tropospheric relevance!


#### Motivation – Importance of HCl

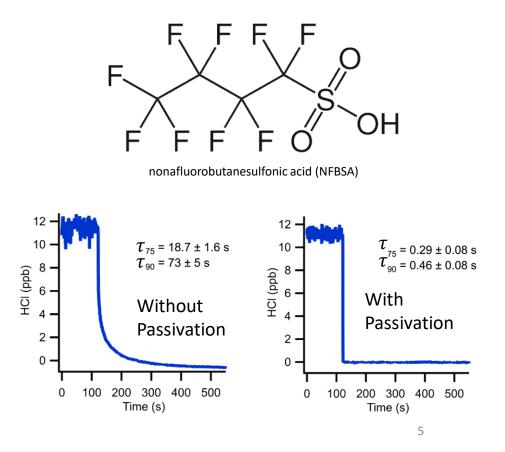
- Gas phase chlorine is found most abundantly as hydrochloric acid (HCl) (10<sup>2</sup>-10<sup>3</sup> pptv)<sup>1</sup>
- Produced predominantly via acid displacement from sea salt aerosol, and as an oxidation product of chlorine radical with volatile organic compounds<sup>1</sup>
- Direct HCl field observations have been traditionally rare due to sampling difficulties and the burden of complex instrumentation




## Novel HCl Detection Method

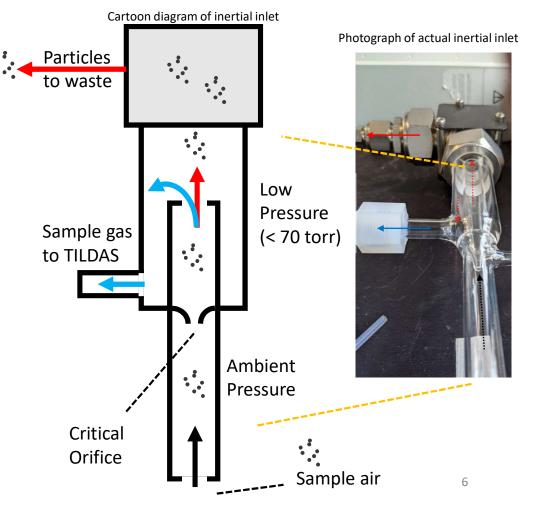
- HCI-Tunable Infrared Laser Direct Absorption Spectroscopy (HCI-TILDAS), developed by Aerodyne Research, Inc.
- Optical technique that utilizes a mid-IR laser to probe the major HCl rotational-vibrational transition
- Two-hundred meter absorption pathlength enabled by astigmatic Herriott cell
- Advantages of HCI-TILDAS over other HCI-detection methods:
  - Specificity for HCl
  - Absolute measurement via Beer-Lambert Law
  - > 1 Hz detection frequency

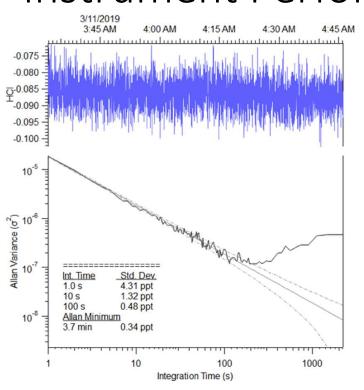



Simulated transmission spectrum for the HCI TILDAS



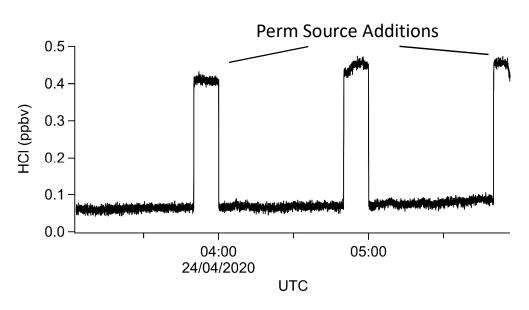
Astigmatic Herriott cell, red lines represent laser travel path


#### Solving Stickiness - Active Passivation


- The high polarity of HCl results in "sticky" character<sup>6,</sup> making sampling difficult
- To address this, a small flow (~100 sccm) of nonafluorobutanesulfonic acid (NFBSA) is constantly added to the sampling line to passivate reactive sites<sup>6</sup>
- NFBSA replaces water / less polar groups bound on interfaces, while its perfluorinated tail creates an inert environment and maximizes HCl transmission to the absorption cell<sup>6</sup>



## Solving Filtration - Inertial Inlet

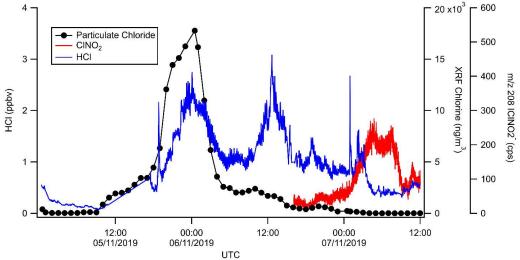

- Method requires particle filtration
  - Particles would dirty TILDAS measurement cell mirrors
  - Use of a traditional filter would collect particulates as well as sticky HCl
- Quartz inertial inlet
  - Based on virtual impactor
  - Avoids need for filter membrane removes particles > 300 nm diameter to a waste flow due to large forward momentum
  - Allows particle-free gas to be drawn from the side
  - Reduces contamination of Herriott cell mirrors





Instrument Performance

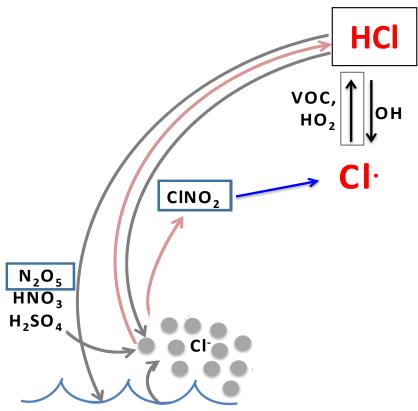
- Precision 5 pptv (1 sec data)
- 3 sigma LOD < 20 pptv




Flow from a HCl permeation source is regularly added to the sample stream to assess instrument performance and as a test for line losses.

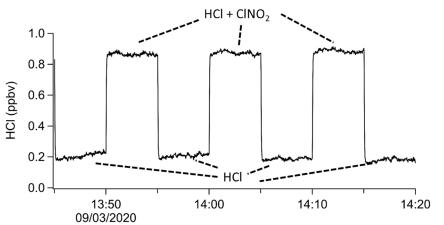
7

#### Future Work and Field Campaigns


- Examining relationship between TILDAS response and humidity
- Sampling during annual UK
  Bonfire Night fireworks celebration
- Participating in the 2021 UK Clean Air Winter intensive observation period in London, UK
- Extend detection capability to include CINO<sub>2</sub> (next slide)



Plot of preliminary, uncalibrated data during Bonfire Night 2019, including HCI (TILDAS), particulate chloride (X-Ray Fluorescence), and CINO<sub>2</sub> (CIMS)


## Future Work - TILDAS for CINO<sub>2</sub>

- CINO<sub>2</sub> is formed by aerosol uptake of N<sub>2</sub>O<sub>5</sub> and its subsequent reaction with Cl<sup>-</sup> (aq)
- The first in situ CINO<sub>2</sub> observations were first reported in 2008 at unexpectedly high mixing ratios<sup>7</sup>
- This is significant because CINO<sub>2</sub> acts as
  - Nocturnal reservoir of NO<sub>x</sub>
  - Source of reactive chlorine atoms upon morning photolysis
- Currently, all in situ CINO<sub>2</sub> observations have been obtained by CIMS




## Future Work - TILDAS for CINO<sub>2</sub>

- CINO<sub>2</sub> is the only known inorganic chlorine species to thermally dissociate at 450 °C<sup>8</sup>
  - $CINO_2$  + heat ( >450 °C)  $\rightarrow$  •Cl +  $NO_2$
- CINO<sub>2</sub> can be detected by TILDAS if the resulting •Cl is converted to HCl
  - •  $Cl + CH_4/C_3H_8$  (100 ppm each)  $\rightarrow$  HCl + products



For detecting  $CINO_2$  by TILDAS, an alternative heated flow path is added to the sample line. Signal from this flow path represents the sum of ambient HCl +  $CINO_2$ 



Preliminary CINO<sub>2</sub> comparisons with CIMS are linear, but a CIMS calibration is still needed. (Error bars represent 1 standard deviation.)

## Summary and Conclusions

- HCI-TILDAS is a powerful technique for detecting HCl and CINO<sub>2</sub>
- Provides an independent method of analysis for providing observational constraints on the highly uncertain chlorine budget
- First field campaign measurements are planned for Winter 2020-2021
- Thanks for your interest!

### Acknowledgements

- This work is funded through ERC starting grant 802685
- T. VandenBoer and C. Young (York University) for assistance in permeation source fabrication
- NOAA for the SBIR that funded the development of the HCI TILDAS
- Wolfson Atmospheric Chemistry Laboratory

#### References

- 1. Simpson, W. R. et al., *Chemical Reviews* 2015 *115* (10), 4035-4062, https://doi.org/10.1021/cr5006638
- 2. Young, C. J. et al., *Atmos. Chem. Phys.*, 14, 3427–3440, https://doi.org/10.5194/acp-14-3427-2014, 2014.
- 3. Wang, X. et al., Atmos. Chem. Phys., 19, 3981–4003, https://doi.org/10.5194/acp-19-3981-2019, 2019.
- 4. Kim, M. J. et al., *Proceedings of the National Academy of Sciences* 2014, 111 (11) 3943-3948, https://doi.org/10.1073/pnas.1318694111
- 5. Sherwen T. et al., *Faraday Discuss.*, 2017, **200**, 75, https://doi.org/10.1039/C7FD00026J
- 6. Roscioli, J. R. et al., *The Journal of Physical Chemistry A* 2016 *120* (9), 1347-1357 https://dx.doi.org/10.1021/acs.jpca.5b04395
- 7. Osthoff, H. et al. Nature Geosci 1, 324–328 (2008). https://doi.org/10.1038/ngeo177
- 8. Thaler, R. D. et al., *Analytical Chemistry* 2011 *83* (7), 2761-2766, https://doi.org/10.1021/ac200055z