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Motivation – Chlorine’s Role in Oxidation 

• Chlorine atom - highly reactive oxidant of both organic and inorganic 
compounds1

• Thought to play important roles in tropospheric oxidation, 
including2,3,4

• Volatile organic compound (VOC) oxidation (hydrocarbons)
• Regional ozone production / ozone loss
• Processing of reactive nitrogen

• Extent of role is highly uncertain as estimated global average 
concentrations span several orders of magnitude5

• Missing observational constraints of inorganic chlorine compounds 
prevents accurate determination of tropospheric relevance!
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Motivation – Importance of HCl

• Gas phase chlorine is found most abundantly 
as hydrochloric acid (HCl) (102-103 pptv)1

• Produced predominantly via acid displacement 
from sea salt aerosol, and as an oxidation 
product of chlorine radical with volatile organic 
compounds1

• Direct HCl field observations have been 
traditionally rare due to sampling difficulties 
and the burden of complex instrumentation

Figure 1: Tropospheric Cl chemis
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Novel HCl Detection Method
• HCl-Tunable Infrared Laser Direct 

Absorption Spectroscopy (HCl-TILDAS), 
developed by Aerodyne Research, Inc.

• Optical technique that utilizes a mid-IR 
laser to probe the major HCl
rotational-vibrational transition

• Two-hundred meter absorption 
pathlength enabled by astigmatic 
Herriott cell

• Advantages of HCl-TILDAS over other 
HCl-detection methods:

• Specificity for HCl
• Absolute measurement via Beer-

Lambert Law
• > 1 Hz detection frequency

4

Astigmatic Herriott cell, red lines represent 
laser travel path

Simulated transmission spectrum for 
the HCl TILDAS



Solving Stickiness - Active Passivation 
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• The high polarity of HCl results in 
“sticky” character6, making sampling 
difficult

• To address this, a small flow (~100 
sccm) of nonafluorobutanesulfonic 
acid (NFBSA) is constantly added to 
the sampling line to passivate reactive 
sites6

• NFBSA replaces water / less polar 
groups bound on interfaces, while its 
perfluorinated tail creates an inert 
environment and maximizes HCl
transmission to the absorption cell6

Without 
Passivation

With 
Passivation

5

nonafluorobutanesulfonic acid (NFBSA) 
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Solving Filtration - Inertial Inlet

• Method requires particle filtration
• Particles would dirty TILDAS 

measurement cell mirrors
• Use of a traditional filter would 

collect particulates as well as sticky 
HCl

• Quartz inertial inlet 
• Based on virtual impactor 
• Avoids need for filter membrane -

removes particles > 300 nm diameter 
to a waste flow due to large forward 
momentum

• Allows particle-free gas to be drawn 
from the side

• Reduces contamination of Herriott
cell mirrors

Particles 
to waste

Sample gas 
to TILDAS

Ambient 
Pressure

Low 
Pressure
(< 70 torr)

Critical 
Orifice

Sample air

Photograph of actual inertial inlet

Cartoon diagram of inertial inlet



Instrument Performance

• Precision – 5 pptv (1 sec data) 
• 3 sigma LOD - < 20 pptv

Perm Source Additions
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Flow from a HCl permeation source is 
regularly added to the sample stream to 
assess instrument performance and as a 
test for line losses.



Future Work and Field Campaigns

• Examining relationship between 
TILDAS response and humidity

• Sampling during annual UK 
Bonfire Night fireworks 
celebration

• Participating in the 2021 UK 
Clean Air Winter intensive 
observation period in London, UK

• Extend detection capability to 
include ClNO2 (next slide)

Plot of preliminary, uncalibrated data during Bonfire Night 
2019, including HCl (TILDAS), particulate chloride (X-Ray 
Fluorescence), and ClNO2 (CIMS)
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Future Work - TILDAS for ClNO2

• ClNO2 is formed by aerosol uptake of 
N2O5 and its subsequent reaction with Cl-
(aq)

• The first in situ ClNO2 observations were 
first reported in 2008 at unexpectedly 
high mixing ratios7

• This is significant because ClNO2 acts as
• Nocturnal reservoir of NOx

• Source of reactive chlorine atoms upon 
morning photolysis

• Currently, all in situ ClNO2 observations 
have been obtained by CIMS
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Future Work - TILDAS for ClNO2
• ClNO2 is the only known inorganic chlorine species to thermally dissociate 

at 450 oC8

• ClNO2 + heat ( >450 oC) → ●Cl + NO2

• ClNO2 can be detected by TILDAS if the resulting ●Cl is converted to HCl
• ●Cl + CH4/C3H8 (100 ppm each) → HCl + products
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For detecting ClNO2 by TILDAS, an alternative heated flow 
path is added to the sample line.  Signal from this flow path 
represents the sum of ambient HCl + ClNO2

Preliminary ClNO2
comparisons with 
CIMS are linear, but a 
CIMS calibration is 
still needed.  (Error 
bars represent 1 
standard deviation.)



Summary and Conclusions

• HCl-TILDAS is a powerful technique for detecting HCl and ClNO2

• Provides an independent method of analysis for providing 
observational constraints on the highly uncertain chlorine budget

• First field campaign measurements are planned for Winter 2020-2021

• Thanks for your interest!
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