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INTRODUCTION

I Drought is a major natural hazard with a serious impact on human
societies and ecosystems. At least 11% of the European population and
17% of its territory have been affected by water shortage, and the total cost
of droughts over the past thirty years is estimated at EUR 100 billion.

I The characterization of droughts is very dependent on the time scale that
is involved. To obtain an overall drought assessment, the cumulative
effects of water deficits over different times need to be examined together.

I We extend the empirical copula-based joint deficit index (JDI) of Kao &
Govindaraju [KG10] to the Gaussian copula model.

DROUGHT DEFINITION

Standardised Precipitation Index
I Let Di be the total precipitation of a certain month i .
I Let x (m)

w be the w-monthly precipitation with respect to month m:

x (m)
w =

m∑
i=m−w+1

Di (1)

I Let FXw be the CDF:

FXw(x (m)
w ) = Pr{Xw ≤ x (m)

w } (2)

I Given the input variable x (m)
w , the Standardised Precipitation Index

(SPI) at time scale w is [MDK93]:

SPIw = φ−1 (uw) , with uw = FXw(x (m)
w ): uniformly distributed, (3)

and φ is the standard normal CDF. We get SPIw ∼ N (0,1)

Joint Deficit Index
I Examine various temporal scales (1-,...,12 months) together by means

of the multivariate probability

Pr{X1 ≤ x (m)
1 , . . . ,X12 ≤ x (m)

12 } = Pr{U1 ≤ u(m)
1 , . . . , U12 ≤ u(m)

12 }. (4)
I Model multivariate probability with Copula function C:

Pr{U1 ≤ u(m)
1 , . . . , U12 ≤ u(m)

12 } = C(u(m)
1 , . . . ,u(m)

12 ) (5)
I The Kendall distribution function

KC(q) = Pr{C(U1, . . . ,U12) ≤ q} (6)

I Given the accumulations (x (m)
1 , . . . , x (m)

12 ) with respect to month m, the
Joint Deficit Index (JDI) is defined as [KG10]:

JDI = φ−1(KC(q)) ∼ N (0,1), with q = C(u(m)
1 , . . . ,u(m)

12 ). (7)
I JDI > 0, JDI < 0, and JDI = 0⇒ wet, dry and normal conditions.

GAUSSIAN COPULA

The Gaussian copula CG can be expressed as [dVdB18]:

CG(u1, . . . ,u12 |Σ) = ΦΣ

(
φ−1(u1), . . . , φ−1(u12)

)
, (8)

with ΦΣ, the multivariate Gaussian CDF with:
I zero mean, and
I Σ =

(
Cov[φ−1(uw), φ−1(uw ′)]

)
, a positive definite covariance matrix.

COVARIANCE MODELS

I Main idea. Make connection with spatial statistics: view Yw = φ−1 (uw) as
a Gaussian random process at “location” w .

I Logarithmic distance between w and w ′: h = |log(w)− log(w ′)|,
I Covariance function:

ρ(h) = Cov[Yw ,Yw ′]. (9)
I Candidate models for ρ(h): Matérn family, (powered) exponential family.

VARIOGRAM-BASED ESTIMATION

I The variogram of the stochastic process Yw is

γ(w ,w ′) =
1
2

Var [Yw − Yw ′] . (10)

I Given n transformed data points (y1,i, . . . , y12,i), i = 1, . . . ,n, the empirical
variogram is given by

γ̂(w ,w ′) :=
1

2 n

n∑
i=1

(yw ,i − yw ′,i)
2, (11)

I Binned variogram:

γ̂(h) =
1
|Nh|

∑
(w ,w ′)∈Nh

γ̂(w ,w ′), (12)

where Nh denotes the set of pairs (w ,w ′) such that the distance equals h,
and |Nh| is the number of pairs in the set Nh.

I Estimate the set of parameters θ by minimizing the objective function

S(θ) =
ñ∑

k=1

(γ̂(hk)− γ(hk ; θ))2 , (13)

where γ(h; θ) = 1− ρ(h; θ) is the theoretical variogram, and ñ the number
of different h-values.

I Model selection with the Akaike Information Criterion (AIC), defined as:

AIC = 2 np + ñ ln S(θ̂), (14)

where np is the number of model parameters.

DATA

Place Years Provided by
Uccle 1898− 2015 RMI
Marseille 1881− 2004 ECA&D
Milan 1858− 2008 ECA&D
St. Petersburg 1881− 2013 ECA&D

Precipitation stations.
I RMI: Royal

Meteorological Institute
of Belgium.

I ECA&D: European
Climate Assessment &
Dataset [ea02a].

ESTIMATION RESULTS
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Figure: Variogram with standard normal marginals. Dots: empirical variogram. Solid line:
theoretical variogram. (Powered exponential correlation function).
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Figure: Goodness-of-fit plots. Empirical copulas versus Gaussian copulas. Dash line: leading
diagonal.

Conclusions
I AIC-based model selection shows that the powered exponential family is

the most suited covariance function.
I Excellent fit of the Gaussian copula.

DROUGHT MONITORING

I Drought category estimation according to the probability of occurrence of JDI.

Table: Drought monitor classification of Svoboda et al. [ea02b].

Category Drought condition Probability of Normal quantiles
occurrence (%)

D0 Abnormally dry 20− 30 −0.84 to −0.52
D1 Moderate drought 10− 20 −1.28 to −0.84
D2 Severe drought 5− 10 −1.64 to −1.28
D3 Extreme drought 2− 5 −2.05 to −1.64
D4 Exceptional drought 2 −2.05

CLIMATE SIMULATIONS

I EURO-CORDEX Data: we consider a multi-model ensemble of 15 RCP’s.
I Spatial resolution: EUR11.
I Select gridpoint closest to Uccle (Belgium).
I Historical runs (1950–2005).
I Future runs. Two emission scenario’s: RCP4.5 & RCP8.5 (2006-2100).

CLIMATE CHANGE

I Fit the Gaussian copula to the historical runs.
I Compute future JDI-values by applying the Gaussian copula to the future runs.

Table: Change of the occurrence
frequency of future JDI-values per
drought category (%).

Condition RCP4.5 RCP8.5
Abnormally dry 60 30
Moderate drought 70 50
Severe drought 70 40
Extreme drought 130 190
Exceptional drought 390 420
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Figure: Probability density of JDI (History vs.
Future)

Conclusions
I Our work confirms the “Dry gets drier, wet gets wetter” paradigm.
I There is a pronounced increase of future extreme and exceptional droughts.
I The drought scenarios based on RCP4.5 & RCP8.5 are not very different.
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