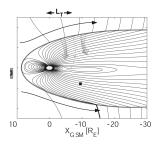
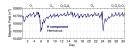

Electrodynamic Coupling and Dissipation of Thermospheric Winds


Stephan C. Buchert, Swedish Institute of Space Physics, scb@irfu.se

EGU 2020 ST3.1 Open Session on Ionosphere and Thermosphere

May 7, 2020

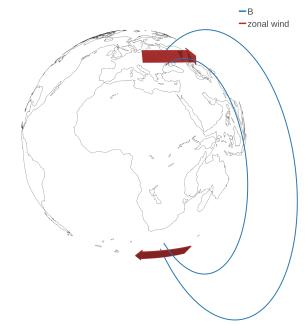

Introduction

Rosenqvist et al., 2006

- we know/understand Joule/frictional heating at high latitudes:
- 1. the plasma in space, above the ionosphere, needs to move/convect,
- 2. driven by magnetosheath flow, magnetic reconnection, pressure gradients, ...
- 3. the plasma avoids E_{\parallel} (electric potential non-const along \vec{B});
- 4. therefore in the ionosphere the plasma is forced to move through the neutral gas,
- 5. this causes \rightarrow frictional heating.

How about mid-latitudes?

Yamazaki and Maute,


2017

Fukushima, 1979

- Sq variations are observed (Graham, Cassini, Gauss, ...)
- Balfour Stewart: "... by air currents in the upper atmosphere ...",
- Sydney Chapman (1924): atmospheric dynamo theory, Sq is caused by winds;
- Is this really correct?
- My answer: No!

For better understanding: the simplest possible scenario?

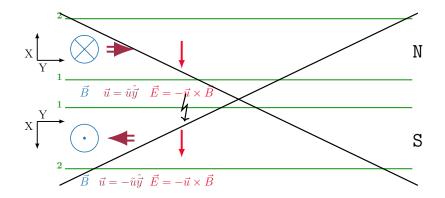
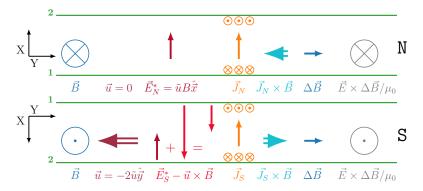
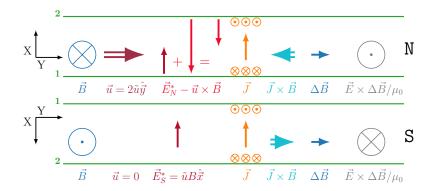


Figure: Collapsed 2-d view of the scenario as seen from above the ionospheric dynamo region. The latitude circles labeled "1" and "2" are magnetically connected, respectively. We assume that the electric field \vec{E} is only the motional one, from the zonal wind. The lightning bolt symbolizes an electrical short circuit along \vec{B} by electrons that would occur for this \vec{E} . The large black cross indicates that this scenario is rejected as a possible electric field configuration.


the electric field

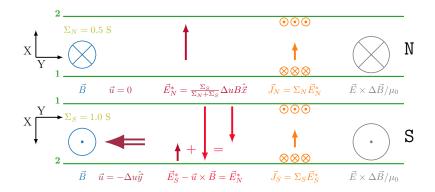
$$\vec{E} = \vec{E}^* + \vec{u}_n \times \vec{B}$$


- $\vec{E}^* \qquad \text{electrostatic field } \nabla \cdot \vec{E}^* = \rho(\vec{x}) / \epsilon_0$ frame independent (for $\ll c$) $\vec{B} \qquad \text{magnetic field, frame independent}$ $\vec{u}_n \qquad \text{neutral wind}$ $\vec{u}_n \times \vec{B} \qquad \text{motional electric field}$
- only \vec{E}^* drives currents according to Ohm's law, not $\vec{u}_n \times \vec{B}$;
- if there is a wind difference $\Delta u_n \neq 0$ between N and S,
- **•** then the plasma creates \vec{E}^* such that $E_{\parallel} \neq 0$ is avoided,
- so forcing itself through the neutral gas.

Find the consistent \vec{E}^* :

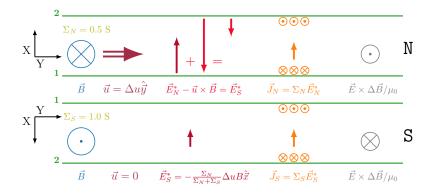
Requirements (for steady state thin ionosphere):

Change of reference frame $N \rightarrow S$



Pse see also my manuscript under public review/discussion at https://www.ann-geophys-discuss.net/angeo-2019-71/#discussion for further details and explanations.

Insights so far:


- 1. only wind differences $\Delta u_n(z)$, z a coordinate along \vec{B} , have an effect;
- 2. the absolute wind \vec{u}_n in Earth-fixed (co-rotating) or Sun-aligned frames is irrelevant;
- 3. Sq disappears when the \vec{u}_n pattern is symmetric with respect to the equator in magnetic coordinates
- 4. (for a centered dipole field);
- 5. variations $\Delta u_n(z)$ cause an electrostatic E^* , to avoid $E_{\parallel} \neq 0$;
- 6. this electrostatic \vec{E}^* drives Pedersen currents, FACs, and Hall currents.

Different conductances in N and S

2-d view in the reference frame of the northern neutral gas. The current \vec{J} has to be equal in both hemispheres for $\Sigma_N = 0.5$ and $\Sigma_S = 1.0$ which determines E_N^* and E_S^* . The sizes of the symbols for Poynting flux are according to the flux magnitudes.

Change of reference frame $N \rightarrow S$ (again)

The sizes of the symbols for Poynting flux in this and the previous slide are according to the flux magnitudes. For $\Sigma_S > \Sigma_N$ there is more Joule heating $J \cdot E_N^*$ and Poynting flux $S \to N$ than vice versa.

Equations

$$\Delta w = u_{y,N} B_N - u_{y,S} B_S \tag{1}$$

$$E_N^* = \frac{\Sigma_S}{\Sigma_N + \Sigma_S} \Delta w = -\frac{\Sigma_S}{\Sigma_N} E_S^*$$
(2)

$$E_{S}^{*} = -\frac{\Sigma_{N}}{\Sigma_{N} + \Sigma_{S}} \Delta w = -\frac{\Sigma_{N}}{\Sigma_{S}} E_{N}^{*}$$
(3)

$$J = \frac{\Sigma_N \Sigma_S}{\Sigma_N + \Sigma_S} \Delta w \tag{4}$$

$$Q_N = \Sigma_N \left(\frac{\Sigma_S}{\Sigma_N + \Sigma_S} \Delta w \right)^2 = \frac{\Sigma_S}{\Sigma_N} Q_S$$
 (5)

 ${\it Q}_{\it N}$ and ${\it Q}_{\it S}$ Joule heating rates in $\rm Wm^{-2}$

Further Insights:

- 1. there is Joule heating $\vec{j} \cdot \vec{E}^* > 0$ in *S*,
- 2. driven by a dynamo, $\vec{j} \cdot \vec{E} < 0$ in N;
- 3. changing the reference system N o S flips the roles
- 4. and the direction of the Poynting vector $\vec{E} \times \vec{B}$;
- 5. entangled dynamos (not only coupled);
- 6. action at a distance:
- 7. e. g., the Sq at Uppsala reacts to changes of \vec{u}_n at the conjugate area (south of Africa above the ocean),
- 8. as long as there is no symmetric local change.

How much Joule Heating?

- the total Hall current over one day J_{H,tot} is about 100 200 kA (Takeda, 2015).
- 2. Estimation as

$$Q_{J,hem} pprox rac{J_{P,tot}^2}{\langle \Sigma_P
angle} pprox \left(rac{\langle \Sigma_P
angle}{\langle \Sigma_H
angle}
ight)^2 rac{J_{H,tot}^2}{\langle \Sigma_P
angle},$$

3. for
$$\langle \Sigma_P
angle pprox 9$$
 S and $\langle \Sigma_H
angle / \langle \Sigma_P
angle pprox 1.4;$

- 4. gives $Q_{J,hem} \approx 0.5 2$ GW per hemisphere.
- 5. Compare with maximum \sim 1 TW in the Halloween storm (Rosenqvist, 2006);
- 6. Joule heating

high latitudes very variable depending on activity mid latitudes quasi-permanently, small variations.

7. is the long term average of high- and mid-latitude JH comparable?

Conclusions

- the dynamo of the Earth's atmosphere works differently as originally suggested;
- 2. not a wind per se (gas motion in the Earth-fixed frame) in the conduction layers of the ionosphere makes a dynamo,
- 3. rather a non-constant $\vec{u}_n(z) \times \vec{B}(z)$
- 4. and the condition $E_{\parallel}=0$ determine a frame-independent field $\vec{E}^*=-\nabla\Phi$,
- 5. \vec{E}^* drives currents and Joule heating,
- 6. Lorentz $\vec{j} \times \vec{B}$ forces the neutral wind towards a situation with constant $\vec{u}_n \times \vec{B}$ on each field-line;
- 7. especially Sq arises from wind differences at conjugate points;
- 8. a similar model should apply to wind variations within a dynamo layer.