The Water-Land-Energy-Food-Climate Nexus In Sardinia

Antonio Trabucco¹, Sara Masia², Janez Sušnik², Donatella Spano^{1,3}, and Simone Mereu^{1,3}

¹Euro-Mediterranean Center on Climate Changes, IAFES Division, Sassari, Italy,

²Integrated Water Systems and Governance Department, IHE Delft Institute for Water Education, Netherlands

³University of Sassari, Agriculture Department, Sassari, 07100, Italy;

EGU2020-16867: Thu, 07 May, 2020

NEXUS and System Dynamics Modelling

- Land, food, energy, water and climate are linked and interconnected into a Nexus, characterized by complexity and feedbacks. An integrated management of the Nexus is critical to understand conflicts/synergies and secure efficient and sustainable use of resources, especially under climate change.
- System Dynamics Modelling (SDM) analyzes behaviour of complex systems, like reservoir water balance and resilience from a range of potential future threats
- Stocks (e.g., water in a reservoir); flows (e.g., river inflows or evaporation, energy use, ag water demand) and converters which control flow rates (e.g., evaporation rates)
- SDM splits large systems into dynamically interacting sub-systems with multiple interactions for resource availability (e.g., water, energy, land use) and uses for different sectors (e.g., agriculture, tourism, domestic)
- Modelling implemented in R, with elements evaluated at every modelling time-step
- SIM4NEXUS H2020 project (https://www.sim4nexus.eu/) and CMCC-NEXUS strategic project

NEXUS: SARDINIA

- 24,090 km2: plains (14%), hills (68%) mountains (18%)
- Mediterranean Climate with 600 \pm 400 mm/yr
- Population is 1.6 million, Tourist flows (38 million overnight stays in 2007)
- Agricultural land 47% of the total area of the island, but only 7% of this area is irrigated
- Irrigation accounts for 69.4% of the water consumption, whereas urban 25.4%
- Industry only 5.2% as many industries have de-salinization plants.

- Tourism for about 17% of GDP, agriculture for 4%.
- Water requirements storage reservoirs (57% of annual demands), and on spring water or groundwater (43%).
- The region is divided in seven hydrological districts), encompassing different reservoirs and water distribution systems only partially connected between districts.
- Thus water availability, but also water demand varies spatially in the region (as well as the distribution by sector).

CMCC Nexus

Systemic approach for integrated management and governance of resources and interconnected sectors (i.e. the Water-Energy-Food-Climate-Land use-Nexus) to achieve SDGs and socio-economic demand.

Framework Integrating different NEXUS aspects (Water-Energy-Food-Land Use-Climate)

Resource limitations/management for achieving security over multiple sectors

- Some of these are already consolidated
- Further expansion and collaboration to consolidate additional tools to analyze further NEXUS aspects

Climate impact on:

- recharge to reservoirs, evaporation rates,
 crop water requirements,
- touristic fluxes, cooling/heating demand
- energy production dependant on solar radiation and wind

Energ

NEXUS integration sample results

NEXUS integration sample results

Policy coeherence

Policy coherence: Analyse conflicts and synergies on resources between different policies / management rules

Bivariate matrix of policy interactions and synergetic/antagonistic effect on single resources

	Τ	Ι		Τ							Π	Ι						Ι	Ι	Π
	E1	E2	E3	E4	E5	FA1	FA2	FA3	W1	W2	W3	L1	L2	C1	C2	C3	T1	T2	F01	FO2
E1		3	-2	1	0	1	1\-1	1	0	0	0	-2	0	2	1	0	0	0	0	2
E2	3		2	2	0	1	0	1	0	0	0	-1	0	2	2	2	0	1	0	0
E3	0\-1	1		0	0	0	0	0	0	0	0	1	0	1	2	0	1	1	0	0
E4	2	2	0		0	1	1\-1	1	1\-1	1	0	-1	0	1	3	1	0	0	0	0
E5	1	2	-1	0		1	0	1	0	0	0	0	0	2	3	1	1	1	0	0
FA1	0	0	0	1	0		1\-1	2	1	0	0	0	0	2	2	1	0	1	0	2
FA2	0	1	1	2	1	1		2	2	2	1	1	-1	-1	1	1	2	1	1	1
FA3	1	1	2	2	1	2	2		1	1	1	-1	-1	1	1\-1	1	2	2	1	2
W1	0	0	0	-1	0	2	-2	2		0	0	0	0	0	2	1	-1	0	0	0
W2	1	1	0	2	0	1	-1	1	0		2	0	0	0	3	3	-1	1	0	0
W3	0	0	0	1	0	3	-1	1	1	0		0	1	0	1	1	-1	0	1	2
L1	-1	1	1	-1	0	0	0	1	0	0	0		1	0	0	0	0	1	1	1
L2	0	0	0	0	0	2	0	1	0	0	0	1		1	2	2	1\-1	0	2	2
C1	3	3	1	2	3	2	1	1	1	0	0	-1	0		1\-1	1	-1	1	2	2
C2	1	2	2	2	3	3	1	2	3	3	1	0	1	1\-1		3	1	2	2	2
C3	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3		0	0	0	0
T1	1	1	0	0	2	1	1	2	1	2	2	0	1	1	1	1		2	1	2
T2	1	1	1	0	2	1	1	2	0	0	2	2	2	1	2	2	2		2	2
FO1	0	0	0	0	0	1	0	2	1	1	0	0	0	2	2	2	0	0		1
FO2	1	0	0	0	1	2	0	1	0	1	1	1	1	2	2	1	0	2	2	

Thanks

