## **Rainfall seasonality changes in northern India across the 4.2 ka event**

Northumbria University

Alena Giesche<sup>1</sup>, Seb Breitenbach<sup>2,\*</sup>, Norbert Marwan<sup>3</sup>, Adam Hartland<sup>4</sup>, Birgit Plessen<sup>5</sup>, Jess Adkins<sup>6</sup>, Gerald Haug<sup>7</sup>, Amanda French<sup>4</sup>, Cameron Petrie<sup>8</sup>, David Hodell<sup>1</sup>

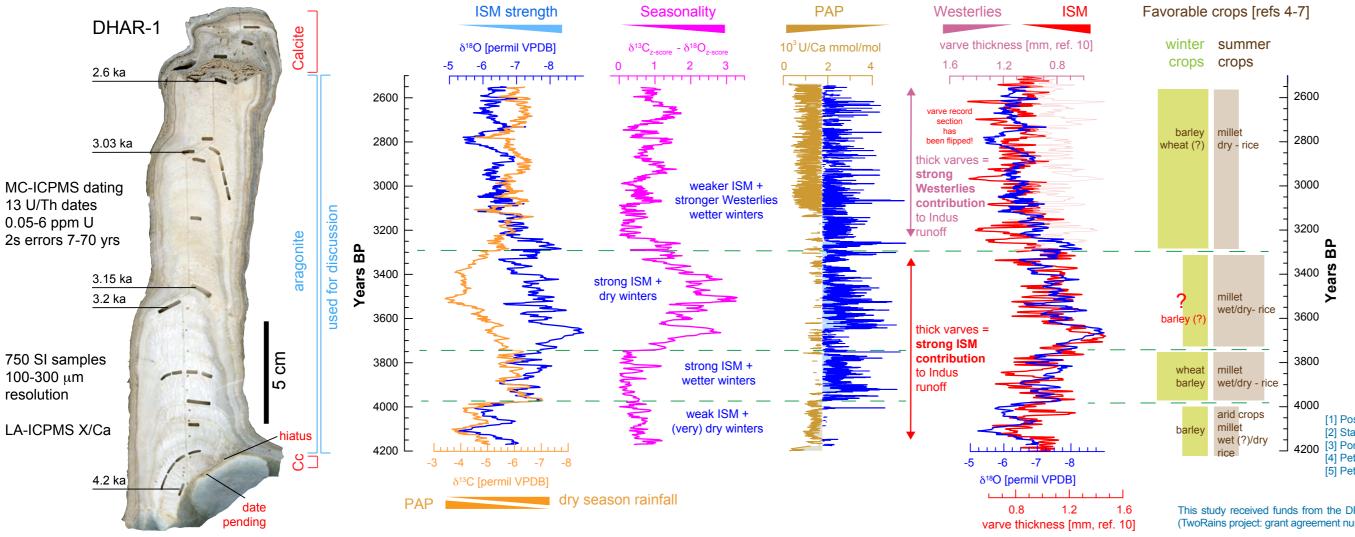
POTSDAM



AINS

The Indus Civilization in (semi-)arid NW India has been studied since long [refs. 1-9] but remains puzzling, also due to lack of high resolution palaeoclimate records. Key research questions include:

DFG Deutsche Forschungsgemeinschaft

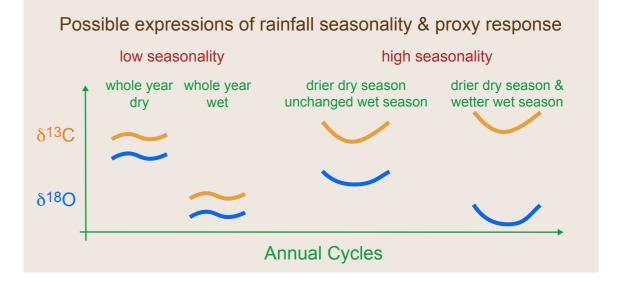

WAIKATO

MAX PLANCK INSTITUT

- When and why did the Indus Civilization leave their cities to disperse across NW India?
- What was the role of climate change in that process?
- How did seasonality affect agricultural practices?

Indian Summer Monsoon and Westerlies interaction leads to complex climatology. Seasonality (relative importance of ISM vs Westerlies precipitation) changed considerably. Stalagmite-based multi-proxy datasets help reconstructing changes in seasonality and the relative contribution of winter and summer rainfall.

A stalagmite from N India shows how ISM and Westerlies interacted, and how seasonality changed. Shifts in seasonal moisture supply might have impacted agricultural practices.






- <sup>4</sup> Environmental Research Institute, School of Science, Waikato University, Hamilton, NZ
- <sup>5</sup> Helmholtz-Centre Potsdam, German Research Centre for Geosciences, Germany
- <sup>o</sup> California Institute of Technology, Pasadena, USA
- <sup>1</sup> Max-Planck-Institute for Chemistry, Mainz, Germany

<sup>8</sup> Department of Archaeology, University of Cambridge, UK





Stalagmite DHAR-1 from NW India records ISM and Westerlies moisture supply between ca. 4.2 and 2.9 kyrs BP.

Multi-proxy data allow identification of changes in ISM versus Westerlies rainfall over NW India. ISM strength is indicated by  $\delta^{18}$ O, dry season dryness by  $\delta^{13}$ C and U/Ca, and seasonality changes by the distance between  $\delta^{18}$ O and  $\delta^{13}$ C z-scores.

Times of correlation between  $\delta^{13}$ C and  $\delta^{18}$ O indicate the ISM regime with low seasonality, while anticorrelation or lack of same indicate increased seasonality (winter dryness).

Comparison with a marine Indus river runoff record suggests a shift from an ISM-dominated regime to a Westerlies-dominated one around 3.3 kyrs BP.

We hypothesise that changes in the relative importance of summer vs. winter rainfall could have influenced agricultural practices and crop selection.

| <ol> <li>Possehl 1997, J. World Prehistory 11</li> <li>Staubwasser et al. 2003, GRL 30, 1425</li> <li>Ponton et al. 2012, GRL 39, L03704</li> <li>Petrie &amp; Bates 2017, J. World Prehistory 30</li> <li>Petrie et al. 2017, Current Anthropology 58</li> </ol> |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| [5] Petrie et al. 2017, Current Anthropology 58                                                                                                                                                                                                                   |

[6] Bates 2019, J. Open Archaeological Data

- [7] Dixit et al. 2014, Geology 42
- 8] Dixit et al. 2018, Scientific Reports 8:4225
- [9] Weber et al. 2010, Archaeol Anthropol Sci 2
- [10] von Rad et al. 1999, Quat. Res. 51

This study received funds from the DFG (grants GA 755/7-1 & PR 755/7-2), the Horizon 2020 research and innovation programme (TwoRains project: grant agreement number 648609) and EU Marie Skłodowska-Curie grant agreement No 691037.