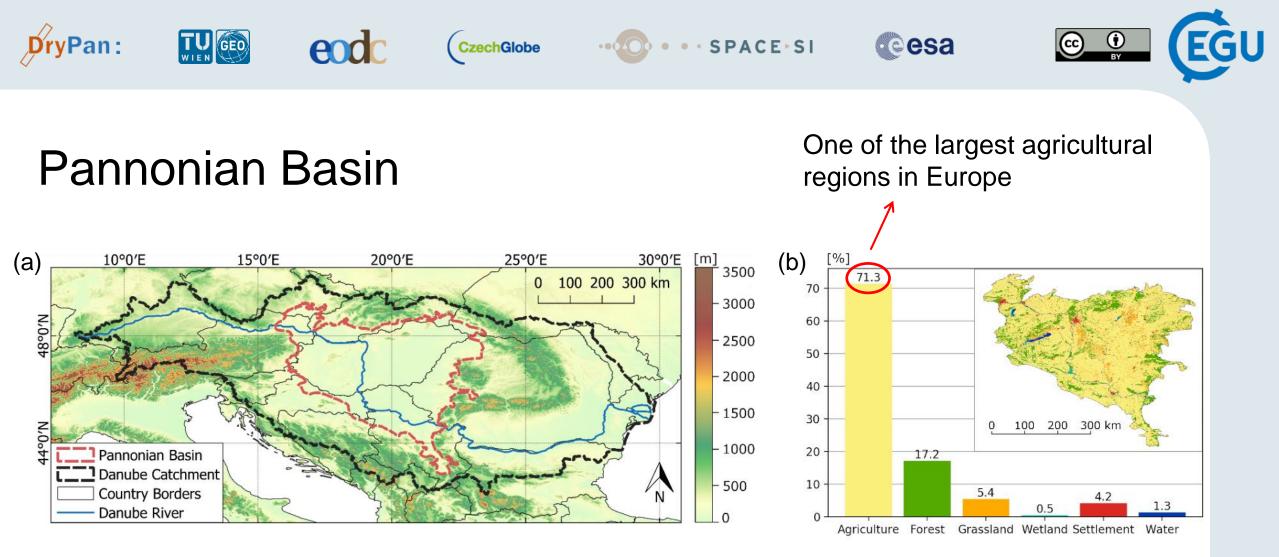


TECHNISCHE UNIVERSITÄT WIEN Vienna | Austria



Earth Observation Data for Agricultural Drought Monitoring in the Pannonian Basin

Laura Crocetti¹ (laura.crocetti@geo.tuwien.ac.at), Milan Fischer², Matthias Forkel³, Aleš Grlj^{4,5}, Wai-Tim Ng⁶, Adam Pasik¹, Ivana Petrakovic¹, Andreas Salentinig¹, Miroslav Trnka², Benjamin Wild¹, Espen Volden⁷, and Wouter Dorigo¹

1 Department of Geodesy and Geoinformation, TU Wien, Austria

- 2 Global Change Research Institute CAS, Brno, Czech Republic
- 3 Institute of Photogrammetry and Remote Sensing, Technische Universität Dresden, Dresden Germany
- 4 Slovenian Centre of Excellence for Space Sciences and Technologies (SPACE-SI), Ljubljana, Slovenia
- 5 ZRC SAZU Research Centre of the Slovenian Academy of Sciences and Arts, Ljubljana, Slovenia
- 6 Earth Observation Data Centre for Water Resources Monitoring (EODC), Vienna, Austria
- 7 European Space Agency (ESA), Frascati, Italy

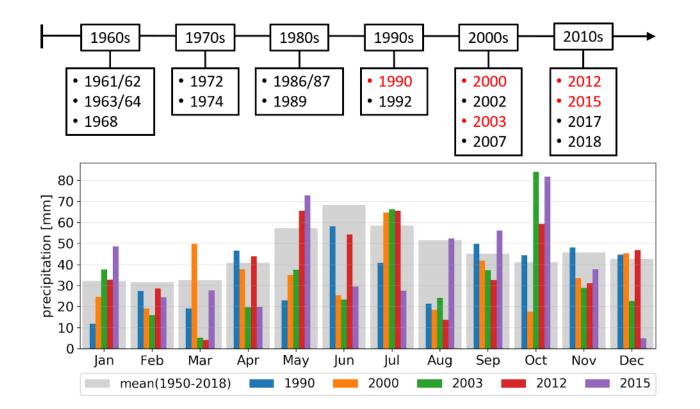


Fig. 1 (a) Topography of the Pannonian Basin, (b) Percentage of land cover for the Pannonian Basin for the year 2015 based on the ESA CCI land cover map (version 2.0.7)

Recent Drought Events in the Pannonian Basin

In recent decades, the Pannonian Basin has experienced several drought episodes, leading to severe impacts on the environment, society, and economy.

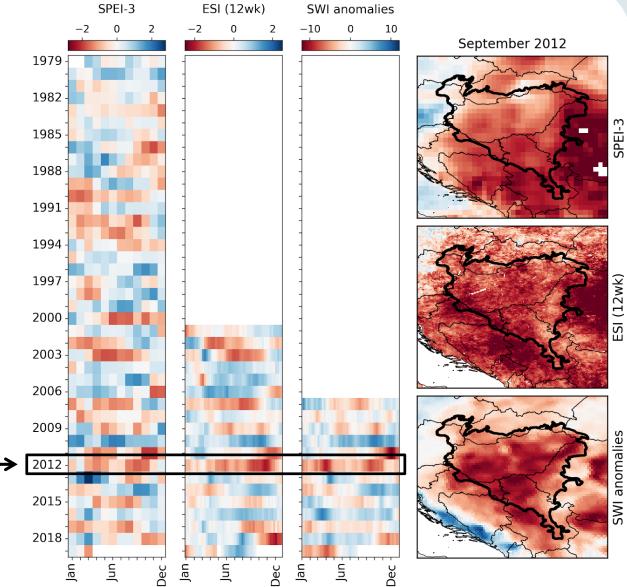
Fig. 2 Years of exceptionally strong droughts are highlighted in red. Monthly precipitation (based on E-OBS v19.0e data) averaged over the Pannonian Basin for the exceptionally strong drought years in contrast to the mean precipitation over the years 1950-2018

SPACESI

Earth Observation-based Drought Monitoring

end

CzechGlobe


Fig. 3a Temporal variability of three drought indicators/indices averaged over the Pannonian Basin:

- <u>SPEI-3</u> computed at the time scale of three months from the ERA5 meteorological reanalysis
- **ESI** (12-week composite)

TU GEO

 <u>SWI</u> anomalies (T value=40) based on MetOp ASCAT

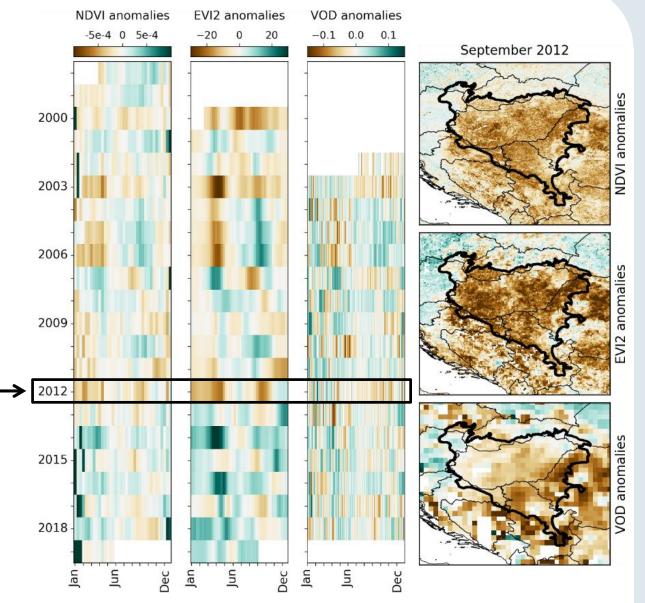
The right-hand side shows the spatial distribution of these variables for a drought in September 2012 throughout the Pannonian Basin.

SPACESI

Earth Observation-based Drought Monitoring

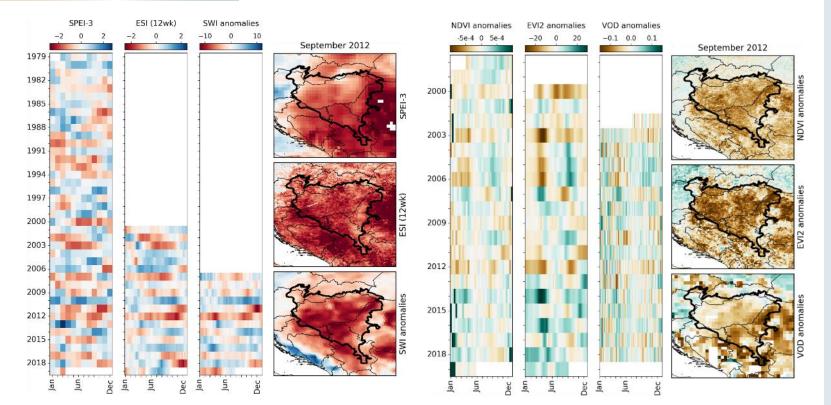
end

CzechGlobe


Fig. 3b Temporal variability of three drought indicators/indices averaged over the Pannonian Basin:

TU GEO

Pan:


- <u>NDVI</u> anomalies (Copernicus Global Land Service's product)
- <u>EVI2</u> anomalies based on TERRA retrievals
- <u>VOD</u> anomalies based on the <u>VODCA</u> C-Band product

The right-hand side shows the spatial distribution of these variables for a drought in September 2012 throughout the Pannonian Basin.

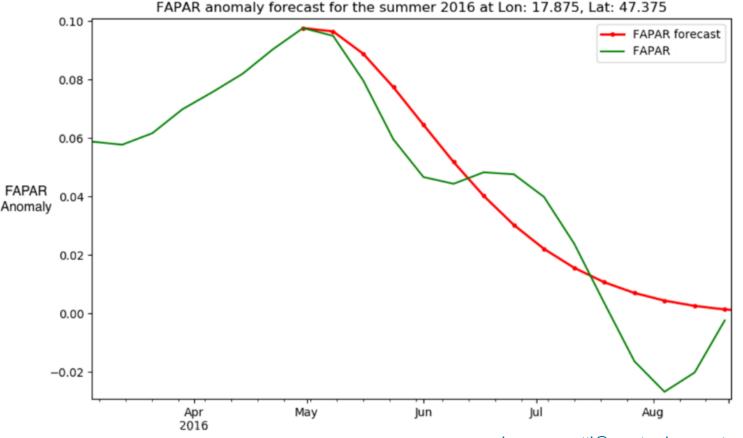
- Strong correspondence between water-related and vegetation-based drought indicators/indices
- Negative anomalies of water-related drought indicators/indices correlate with negative anomalies of vegetation based drought indicators/indices
- These remotesensing based drought indicators/indices capture drought events (see Fig. 2) very well

Outlook: Drought Impact Forecasting

Aim: Predict near future vegetation anomalies from current and past vegetation and soil moisture states

Data: ESA CCI Soil Moisture Product (0.25°, daily) MODIS FAPAR (0.25°, 8-daily)

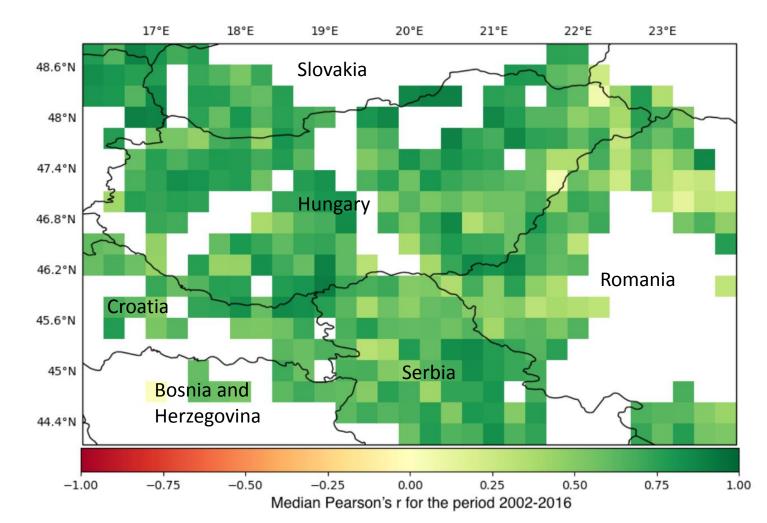
Method: Vector Auto Regression (VAR)


- Multivariate forecasting algorithm
- Captures linear inter-dependencies among multiple time series

7

Outlook: Drought Impact Forecasting

Fig. 4: Forecast example for a pixel in the north-western part of the Pannonian Basin. The forecast (red line) starts in May and ends at the end of August. The green line are the observed FAPAR anomalies



laura.crocetti@geo.tuwien.ac.at

Outlook: Drought Impact Forecasting

Fig. 5: Median Pearson's correlation coefficient between forecasted FAPAR anomalies and the corresponding observed FAPAR anomalies. Grid points with less than 50% crop share are masked (white areas)

References

Review paper under preparation: Crocetti et al. 2020 - Earth Observation for Agricultural Drought Monitoring in the Pannonian Basin: current state and future directions

Wild et al. 2020 – Seasonal Prediction of Drought-Related Vegetation Stress on Ecosystems in the Pannonian Basin using long-term satellite datasets and vector autoregression (VAR)

This study is funded by the DryPan project of the European Space Agency. https://www.eodc.eu/esa-drypan/

APPENDIX

Standardized Precipitation Evapotranspiration Index (SPEI)

The SPEI is a common used drought index that is based on precipitation and temperature data. It can be calculated for different time scales.

Vicente-Serrano et al. (2009) – A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index (https://doi.org/10.1175/2009JCLI2909.1)

Cesa

• • · SPACE · SI

end

vPan:

end

TU GEO

vPan:

 \odot

Cesa

• • · SPACE · SI

••••

The ESI quantifies anomalies in the ratio of actual to potential ET.

CzechGlobe

Anderson et al. (2011) – Evaluation of Drought Indices Based on Thermal Remote Sensing of Evapotranspiration over the Continental United States (https://doi.org/10.1175/2010JCLI3812.1)

Anderson et al. (2013) – An Intercomparison of Drought Indicators Based on Thermal Remote Sensing and NLDAS-2 Simulations with U.S. Drought Monitor Classifications (<u>https://doi.org/10.1175/JHM-D-12-0140.1</u>)

Soil Water Index (SWI)

The SWI provides an estimate of the moisture content in the soil profile from surface measurements. The SWI is available for different T-values which can be associated with various depths in the soil.

Paulik et al. (2014) – Validation of the ASCAT Soil Water Index using in situ data from the International Soil Moisture Network (<u>https://doi.org/10.1016/j.jag.2014.01.007</u>)

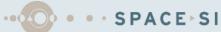
Wagner et al. (1999) – A Method for Estimating Soil Moisture from ERS Scatterometer and Soil Data (<u>https://doi.org/10.1016/S0034-4257(99)00036-X</u>)

CzechGlobe

 \odot

Cesa

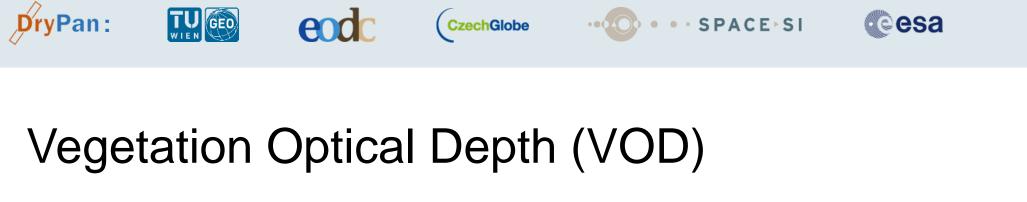
NDVI is an indicator of the greenness of the biomes.


end

ryPan:

Tucker et al. (1979) – Red and photographic infrared linear combinations for monitoring vegetation (<u>https://doi.org/10.1016/0034-4257(79)90013-0</u>)

••••••••••SPACE•SI


Enhanced Vegetation Index 2 (EVI2)

BACK

EVI2 is the 2-band EVI without a blue band. EVI is a feedback-based soil and atmospheric resistant vegetation index that provides improved sensitivity in high biomass regions while minimizing soil and atmosphere influences

Jiang et al. (2008) – Development of a two-band enhanced vegetation index without a blue band (<u>https://doi.org/10.1016/j.rse.2008.06.006</u>)

 \odot

BACK

VOD is an indicator to detect changes in vegetation that is based on spaceborne microwave observations

Moesinger et al. (2019) – The Global Long-term Microwave Vegetation Optical Depth Climate Archive VODCA (<u>https://doi.org/10.5194/essd-12-177-2020</u>)