
Quantifying past arctic herbivore populations from ancient sedimentary DNA by metabarcoding, hybridization capture enrichment, and droplet digital PCR

Peter A. Seeber¹, Ulrike Herzschuh², Beth Shapiro³, Hendrik Poinar⁴, Duane Froese⁵, Laura S. Epp¹

¹University of Konstanz, Konstanz, Germany, ²Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems, Potsdam, Germany, ³University of California Santa Cruz, Santa Cruz, USA, ⁴McMaster University, Hamilton, Canada, ⁵University of Alberta, Edmonton, Canada.

Summary

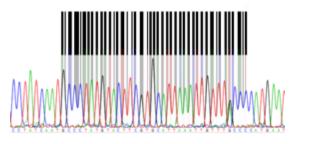
Herbivorous mammals

- \checkmark identification of terrestrial mammals from sedimentary aDNA by metabarcoding¹ & hybrid capture^{2,3}
- but: detection unreliable (patchy), not quantitative

Methods

aDNA from Siberian lake sediment cores

Herbivore proxies


- coprophilous fungi (e.g. Podospora, Sporormiella): spore abundance established as herbivore proxy
- \checkmark endo- and ectoparasites of herbivores, e.g. nematodes, mites, insects

Plants

 \checkmark robust metabarcoding assay is available^{4,5}

- curated database for arctic-boreal plants
- database currently being expanded for complete chloroplast genomes (Tromsø Museum)

a) Metabarcoding of plants (trnL P6 loop⁶) and coprophilous fungi (ITSI-5.8S-ITS2)^{7,8}

- \Rightarrow high taxonomic resolution potential issues:
- length of conventional barcode regions (up to 700 bp)
- primer and length amplification bias

currently available PCR primers for fungal metabarcoding may not amplify taxa of interest and produce long fragments; -> design of novel barcoding primers for short fragments (100-200 bp) to include coprophilous taxa.

quantification: HTS read abundance

b) Hybridization capture enrichment

enrichment of aDNA of mammals (complete mitogenome) & proxy organisms (barcode regions: ITSI/2, COI, I2S, 28S) \star complex bait set to target multiple markers of multiple taxa bait set:

- ☆ DNA fragmentation less problematic (PCR-free method)
 - \Rightarrow high bait-target divergence is unproblematic (up to 40% bait-target mismatch)
 - o enrichment success may be affected by amount and divergence of

non-target DNA in the genomic library

quantification: HTS read abundance

		marker	extent	# of sequences
Fungi		ITS1, ITS2	4 genera of obligate coprophilous fungi + representative sequences of 65 genera of facultative coproph. fungi	1199
		12S	representative sequences of obligate/facultative cp. fungi	7
Oomycota		ITS1, ITS2	3 selected species	12
Nematoda		COI	27 selected genera	98
		ITS2	27 selected genera	119
Acari		COI	4 selected genera	16
		285	4 selected genera	16
Insecta	Diptera	COI	6 selected genera	25
	Phthiraptera	COI	5 selected genera	34
Mammals		complete mitogenome:	11 species	11

c) Droplet digital PCR (ddPCR) - absolute quantification of aDNA of selected target taxa.

quantifiable PCR amplification within 20.000 nano-droplets

evaluation by preliminary experiments on contemporary eDNA of ungulate intestinal parasites & coprophilous fungi (e.g. Trichostrongylidae / Podospora sp.)

absolute quantification of template molecules

Objectives & Data Output

- Quantitative data of herbivores, proxy organisms, and vegetation with high taxonomic resolution \bullet
- Assessment of correlation patterns of plant community structures with climatic changes or \bullet

with abundance of herbivores

Changes in diversity and relative abundance of plants, mammals, and fungi over time at

different sites throughout the Arctic?

Peter A. Seeber

peter.seeber@uni-konstanz.de

¹ Graham RW et al. (2016) Timing and causes of mid-Holocene mammoth extinction on St. Paul Island, Alaska. PNAS ¹Seeber PA et al. (2019) Terrestrial mammal surveillance using hybridization capture of environmental DNA from African waterholes. Mol Ecol Resour 19:1486-1496 ²Murchie T et al. (2019) PalaeoChip Arctic1.0: An optimised eDNA targeted enrichment approach to reconstructing past environments. 1–45. bioRxiv 730440 ⁴Taberlet P et al. (2007) Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nuc Acids Res 35, e14 ⁵Sønstebø JH et al. (2010) A minimalist DNA barcoding approach for reconstructing past Arctic vegetation and climate. Mol Ecol Resour 10:1009-1018 ⁶Willerslev E et al. (2014) Fifty thousand years of Arctic vegetation and megafaunal diet. Nature 506:47–51. 7 Epp LS et al. (2012) New environmental metabarcodes for analysing soil DNA: potential for studying past and present ecosystems. Mol Ecol 21:1821–1833.

⁸Bellemain E et al. (2013) Fungal palaeodiversity revealed using high-throughput metabarcoding of ancient DNA from arctic permafrost. Environ Microbiol 15:1176–1189.

The Swedish Research Council for Environment. Agricultural Sciences and Spatial Planning

