

Towards a more reliable reconstruction of the historical solar variability: A more realistic description of solar ephemeral magnetic regions

Bernhard Hofer^[1,2], Natalie Krivova^[1], Chi-Ju Wu^[1], Ilya G. Usoskin^[3], Robert Cameron^[1]

^[1]Max-Planck-Institut für Sonnensystemforschung, Göttingen, Germany

^[2]Georg-August-Universität Göttingen, Institute for Astrophysics, Göttingen, Germany

^[1]Space Climate Research Unit and Sodankylä Geophysical Observatory, University of Oulu, Oulu, Finland

Total solar irradiance and magnetic activity

- The **total solar irradiance** (TSI) is the spectrally-integrated energy flux per unit area at 1 AU.
- Direct satellite measurements are available since 1978. They show that TSI varies on various timescales.
- This variability is important for climate models. Due to the short time series reconstructions are needed.
- On climate relevant timescales the variability is driven by surface magnetism. **Sunspots** cause darkening of the Sun while **faculae** lead to its brightening.
- TSI is reconstructed from proxies of solar activity, the longest direct proxy is the sunpot number (SN).

Adapted from: NASA/Goddard Space Flight Center Scientific Visualization Studio (From: https://svs.gsfc.nasa.gov/2656)

The role of ephemeral regions

- Ephemeral regions (ERs; *red circles*) are small-scale bipolar magnetic regions believed to be the main source of long-term TSI variations. Contrary to the much larger **active regions** (ARs; *blue circle*) they are too small to feature sunspots.
- ERs are missed completely by SN records!
- While crucial for the long-term variability, most models ignore them. In the SATIRE-T model (Wu et al. 2018) the emergence of ERs is linearly linked to the SN.
- → **Problem**: No ERs emerge at **zero sunspots.**
- However, reconstructions from cosmogenic isotopes (Usoskin et al. 2019) suggest that the open magnetic flux^[1] (OF) during the Maunder Minimum did NOT vanish. (contradicts our model (*black curve*))
- New description of ERs is needed.

3

^[1] Open flux is part of the solar magnetic field reaching out into the heliosphere

SATIRE-Model

- We use the Spectral And Total Irradiance REconstruction (SATIRE) model; version T. (Wu et al. 2018)
- SATIRE differentiates between: **umbra**, **penumbra**, **faculae**, **network** and **quiet Sun**.
- The evolution of the magnetic field of ARs, ϕ_{act} , ERs, ϕ_{eph} , and the OF, ϕ_{open} is described by a set of ordinary differential equations (ODEs).
- Source terms: The emergence rates of ARs and ERs ε_{act} , ε_{eph} . In the original SATIRE-T model ε_{eph} is linked linearly to the SN.
- From the magnetic flux the fractional disc coverage by the magnetic features and the **TSI** is calculated.

New approach

- We describe the emergence of active and ephemeral regions by a single **powerlaw size distribution** (Thornthon&Parnell, 2012)
- The flux emergence varies with solar activity as described by exponent m_{SN} that varies with the SN

Results

- In original SATIRE-T (Wu et al. 2018) the ER emergence rate (black) drops to zero during the Maunder Minimum
- ➤ In the new model (*red*) it never falls below a minimum "ground level"
- OF of the new model (*red*) and the original model (*black*) are consistent with the reconstruction from the geomagnetic aa-index (*green*) (Lockwood et al. 2014)
- The new model successfully reproduces the OF during the Maunder Minimum reconstructed from cosmogenic isotopes (*blue*) (Usoskin et al. 2019)

Summary

- **ERs** are crucial for **long-term reconstructions** of solar irradiance variability, but they are not or not realistically accounted for by the existing models.
- We propose a new description of the ERs. The new model assumes that all magnetic regions emerging on the solar surface can be described by a single **power-law distribution**, with its slope varying with solar activity.
- The new model is **supported by various independent observations**, such as the solar cycle variability of ERs and ARs (Harvey, 1993) and independent reconstructions of the solar OF (Lockwood 2014, Usoskin 2019).
- It will help to reduce the uncertainty in the long-term irradiance variability and thus also in the **solar forcing in future scenarios**.

References

- Harvey, K. L. 1993, Ph.D. thesis, Univ. Utrecht, The Netherlands
- Harvey, K. L. 2001, in Encyclopedia of Astronomy and Astrophysics, Solar Active Regions: Ephemeral, ed. P. Murdin (Nature Publishing Group), 2275
- Lockwood, M., Nevanlinna, H., Barnard, L., et al. 2014, Annal. Geophys., 32, 383
- Thornton, L. M. & Parnell, C. E. 2011, Sol. Phys., 269, 13
- Stuiver, M. & Braziunas, T. F. 1993, The Holocene, 3, 289
- Usoskin, I., Wu, C. J., Krivova, N., et al. 2019, in International Cosmic Ray Conference, Vol. 36, 36th International Cosmic Ray Conference (ICRC2019), 1164
- Wu, C.-J., Krivova, N. A., Solanki, S. K., & Usoskin, I. G. 2018, A&A, 620, A120