

Spatio-temporal missing data reconstruction in satellite displacement measurement time series

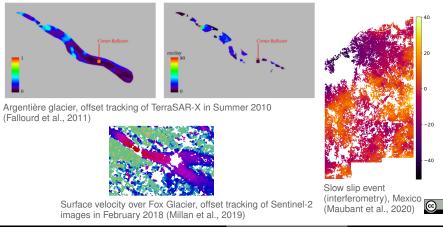
Alexandre Hippert-Ferrer^{1†}, Yajing Yan¹, Philippe Bolon¹, Romain Millan²

¹Laboratoire d'Informatique, Systèmes, Traitement de l'Information et la Connaissance (LISTIC), Annecy, France ²Institut des Géosciences de l'Environnement (IGE), Université Grenoble Alpes, CNRS, Grenoble, France [†] Correspondence to: alexandre.hippert-ferrer@univ-smb.fr

Thursday, May 7

Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspective
••			
Introduction			

- Missing data is a frequent issue in displacement time series in both space and time.
- It can prevent the full understanding of the physical phenomena under observation.
- Causes : rapid surface changes, missing image, technical limitations.



Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan

EGU2020

Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspective
Motivation of th	ne study		

Handling missing data in displacement time series

- Classical approach : spatial or temporal interpolation
- Not exploited (yet) : spatio-temporal information

ightarrow Manage spatio-temporal missing data in time series \leftarrow

Objective : propose a statistical gap-filling method addressing

- 1. Randomness and possible spatial, temporal and spatio-temporal correlation of
 - Noise
 - Missing data
- 2. Complex displacement behaviors (mixed frequencies)
- 3. Small time series

Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspective				
	•00000						
Extended EM-EO	Extended EM-EOF						

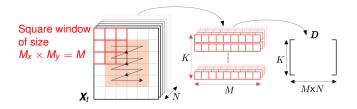
 \rightarrow Extension of the EM-EOF method (Hippert et al., 2019, 2020) [3, 4]

Key features of the extended EM-EOF method :

- Low rank structure of the sample spatio-temporal covariance matrix.
- Displacement signal and noise decomposed in empirical orthogonal functions (EOFs).
- Reconstruction with an appropriate initialization of missing values.
- Expectation-Maximization (EM)-type algorithm for resolution.

Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspective
	00000		
Data represent	ation		

- Let $X_t = \{x_{ij}(t)\}_{1 \le i \le P_x, 1 \le j \le P_y}$ be a spatial grid observed at time t = 1, ..., N.
- Some elements of X_t are missing.
- All X_t are stacked into a spatio-temporal data matrix $Y = (X_1, X_2, \dots, X_N)$.



Each X_t is augmented into a Hankel-block Hankel (HbH) matrix D_t of size $K \times M = K_x K_y \times M_x M_y$, with $K_x = (P_x - M_x + 1)$, $K_y = (P_y - M_y + 1)$.

All D_t is stacked into a spatio-temporal matrix \mathcal{D} of size ($K \times NM$), that is $\mathcal{D} = (D_1, D_2, \dots, D_N)$.

Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspective
Covariance es	timation and decompo	sition	

Sample spatio-temporal covariance is estimated :

$$\hat{\mathbf{C}} = \frac{1}{K} \boldsymbol{\mathcal{D}}^T \boldsymbol{\mathcal{D}}$$
(1)

The eigenvalue decomposition (EVD) of matrix $\hat{\bm{C}}$ yields to :

$$\hat{\mathbf{C}} \stackrel{\text{EVD}}{=} \sum_{i=1}^{NM} \lambda_i \boldsymbol{u}_i \boldsymbol{u}_i^T \tag{2}$$

Vectors u_i are the *NM* EOFs modes of matrix \mathcal{D} . First modes capture the main spatio-temporal dynamical behavior of the signal, others represent perturbations.

Reconstruction with an optimal number of EOF modes $R \ll NM$ is obtained as

$$\hat{\boldsymbol{\mathcal{D}}} = \boldsymbol{A}_R \boldsymbol{U}_R \tag{3}$$

A is the matrix of principal components, which are the projection of \mathcal{D} on each EEOF u.

How do we find R?

Alexandre Hippert-Ferrer, Yajing Yan, Philippe Bolon, Romain Millan

Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspective			
	000000					
Selection of the optimal number of EOF modes						

1. Root-mean-square error (cross-RMSE) on cross-validated data $\mathcal{Y} \in \textbf{Y}$:

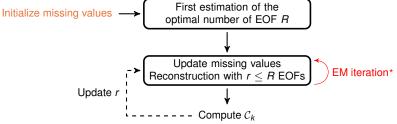
$$\frac{1}{MN}||\hat{\mathcal{Y}}_k - \mathcal{Y}||_2 \tag{4}$$

- Requires no a priori information
- 2. Confidence index associated with each eigenvalue of \mathcal{D} :

$$C_k = \frac{\max(\Gamma_k) - \Gamma_k}{\max(\Gamma_k) - \min(\Gamma_k)} \qquad k = 1, \dots, NM$$
(5)

with $\Gamma_k = \log \left(\frac{\Delta \lambda_k}{\lambda_j - \lambda_k} \right)$.

- Investigation of eigenvalue degeneracy, which is linked to their uncertainties $\frac{\Delta \lambda_k}{\lambda_l \lambda_k}$.
- Over-estimation of EOF modes is addressed by building metric C_k .



* For a fixed number of EOF modes, cross-RMSE is computed until it converges.

Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspectiv
	000000		
Determination	of the spatial lag M fo	r spatio-temporal c	ovariance

- Trade-off between the amount of information extracted in the window (large M) and the number of repetitions of the window within each image (small M).
- **Upper limit based on covariance estimation theory :** M < P/6

Lower limit :

construction

We use the spatial decorrelation decay τ defined as :

$$\tau = -\frac{\Delta P}{\log r} \tag{6}$$

r : lag-one auto-correlation ΔP : spatial sampling rate, here 1 pixel.

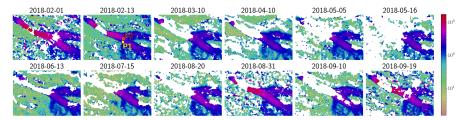
M can be approximated by $M \simeq P/\tau$ (Ghil et al., 2002) [1] which gives M > P/20 with r < 0.95.

Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspective
Surface velocities	s on Fox Glacier, Nev	v Zealand	

Period	Platform	Data type	Time series size	[min, max]% missing
02/2018-09/2018	Sentinel-2	Offset tracking	12	[10, 60]%

Time series description.

Surface velocities computed from the study of (Millan et al., 2019) [5].



Surface velocities (m/year) on Fox Glacier. P1 and P2 locations are selected for temporal evolution analysis.

Context and motivation		extended EM-EOF meth		Application on real data	Conclusion and perspective O
Reconstru	iction resu	lts			
2018-02-01	2018-02-13	2018-03-10	2018-04-10	• P1 • P2 - •-	P2 _{Extended} - ● - P2 _{EM-EOF}
1 20 m	1.50 000	1.2000	1.00	800	IĮ
2018-05-05	2018-05-16	2018-06-13	2018-07-15	009 (m/year)	
C	1.1	1.57	and the second	· · · · ·	
2018-08-20	2018-08-31	2018-09-10	2018-09-19	400 telocity	
	Core -		les !		

- 13 EOFs modes; *M*=225; cross-validation data : 1% of observed values.
- Seasonal variation is retrieved, consistent values with the literature (4.5 m/day below the main ice fall in winter).
- Improved accuracy of ~15m/year compared to the EM-EOF method.

08

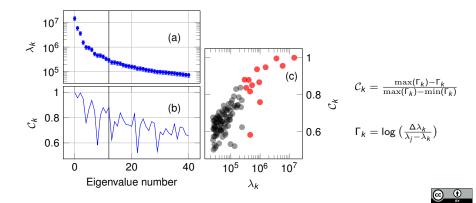
200

02

05

Date (mm/2018)

- Optimal number of EOF modes (13) corresponds to a peak in C_k which coincides with a break in the eigenvalue spectrum.
- Eigenvalues multiplets are kept in the reconstructed data.



Context and motivation	The extended EM-EOF method	Application on real data	Conclusion and perspective
Conclusion			

- Extension of the EM-EOF method to impute spatio-temporal missing values.
 - Can handle small time series with high incompleteness
 - Extraction of the displacement signal from heterogeneous perturbations (noise)
- Robust selection of the optimal number of EOF modes based on :
 - Iterative computation of the cross-validation error
 - Confidence metric based on eigenvalue uncertainties to address potential over-estimation due to eigenvalue degeneracy
- A range of spatial lag *M* is provided
- Limitations : potential edge effect due to spatial square window.

Perspective : Use a shaped window (adaptive spatial lag) instead of a square window.

Bibliography

Thank you for your attention.

- M. Ghil, M. Allen, M. D. Dettinger, K. Ide, D. Kondrashov, M. Mann, A. Robertson, A. Saunders, Y. Tian, F. Varadi, and P. Yiou. Advanced spectral methods for climatic time series. Review of Geophysics, 40, 1 :1–41, 2002.
- [2] N. Golyandina and K. Usevich. 2d-extension of singular spectrum analysis : Algorithm and elements of theory. Matrix Methods : Theory, Algorithms and Applications, pages 449–473, 2010.
- [3] A. Hippert-Ferrer, Y. Yan, and P. Bolon. Gap-filling based on iterative EOF analysis of temporal covariance : application to InSAR displacement time series. In IGARSS, pages 262–265, 2019.
- [4] A. Hippert-Ferrer, Y. Yan, and P. Bolon. EM-EOF : gap-filling in incomplete SAR displacement time series. IEEE Trans. Geosci. Remote Sens., in review, 2020.
- [5] R. Millan, J. Mouginot, A. Rabatel, S. Jeong, D. Cusicanqui, A. Derkacheva, and M. Chekki. Mapping surface flow velocity of glaciers at regional scale using a multiple sensors approach. Remote Sensing, 11(21), 2019.

This work has been supported by the Programme National de Télédétection Spatiale (PNTS, http://www.insu.cnrs.fr/pnts), grant PNTS-2019-11, and by the SIRGA project.

Reconstruction averaging

Diagonal averaging, called *hankelization*, [2] is applied successively to each matrix $H_{i,t}$ and to each matrix D_t , so that we have the following averaging :

$$x_{ik}(t) = \frac{1}{\#\mathcal{A}_k} \sum_{(l,l') \in \mathcal{A}_k} x_{ll'}(t)$$
(7)

$$\boldsymbol{H}_{k,t} = \frac{1}{\#\mathcal{B}_k} \sum_{(l,l') \in \mathcal{B}_k} \boldsymbol{H}_{ll',t}$$
(8)

with $\mathcal{A}_k = \{(I, I') : 1 \le I \le K_y, 1 \le I' \le M_y, I + I' = k + 1\}$ and $\mathcal{B}_k = \{(I, I') : 1 \le I \le K_x, 1 \le I' \le M_x, I + I' = k + 1\}.$

Confidence index and effective sample size

North's et al. "rule of thumb" (North, 1982) to approximate the eigenvalue uncertainty :

$$\Delta \lambda_k \approx \sqrt{\frac{2}{L^*}} \lambda_k \qquad \Delta \boldsymbol{u}_k \approx \frac{\Delta \lambda_k}{\lambda_j - \lambda_k} \boldsymbol{u}_j \tag{9}$$

with $L^* = N^* M^*$.

- $N^* = N [1 + 2 \sum_{k=1}^{N-1} (1 \frac{k}{N}) \rho(k)]^{-1}$ is the temporal ESS (Thiébaux, 1984)
- M* is the spatial ESS within each spatial window of size M. We estimate it by :

$$M^* = M \left(1 + 2 \sum_{k=1}^{M} (1 - \frac{k}{M}) \nu(k) \right)^{-1}$$
(10)

Then $\Gamma_k = \log \left(\frac{\Delta \lambda_k}{\lambda_j - \lambda_k} \right)$ and C_k is computed as :

$$C_{k} = \frac{\max(\Gamma_{k}) - \Gamma_{k}}{\max(\Gamma_{k}) - \min(\Gamma_{k})} \qquad k = 1, \dots, NM$$
(11)

