

Materials Science and Technology

Top-down Support of Swiss non-CO₂ Greenhouse Gas Emissions Reporting to UNFCCC

S. Henne¹, M. K. Vollmer¹, M. Steinbacher¹, M. Leuenberger², F. Meinhardt³, J. Mohn¹, L. Emmenegger¹, D. W. Brunner¹, S. Reimann¹

(1) Laboratory for Air Pollution/Environmental Technology, Empa, Dübendorf
 (2) University of Bern, Climate and Environmental Physics Division, Switzerland
 (3) Umweltbundesamt (UBA), Kirchzarten, Germany

Swiss GHG Emissions According to National Inventory 😕 Empa Reporting (NIR) to UNFCCC

Non-CO₂ GHGs in Switzerland

Emission contribution 19 %

Uncertainty contribution 95 % w/o LULUCF

Contribution by sector


```
46 Tg yr<sup>-1</sup> (CO<sub>2</sub> equivalent)
Total:
                  (+ \sim 6 \text{ Tg yr}^{-1} \text{ international flights})
Per capita: \sim 5.5 \text{ t yr}^{-1}
                  (+ ~0.8 t yr<sup>-1</sup> international flights)
w/o LULUCF
                      Values for 2018; Swiss NIR, FOEN (2020)
```

stephan.henne@empa.ch

Top-Down Support of Swiss NIR

We aim at supporting national bottom-up inventory reporting by using atmospheric observations, transport simulations and inverse methods to derive national total emissions and compare those to NIR reported values.

Inverse methods

Bayesian inverse modelling: CH₄, N₂O Tracer ratio method: Synthetic gases

Swiss non-CO₂ GHG Emissions https://doi.org/10.5194/egusphere-egu2020-17176 stephan.henne@empa.ch

Swiss GHG Observation Network

EGU General Assembly 2020 © Authors 2020. All rights reserved.

AGAGE

COS National Network Switzerland

GAW

Swiss non-CO₂ GHG Emissions https://doi.org/10.5194/egusphere-egu2020-17176 stephan.henne@empa.ch

Atmospheric Transport Simulations

- FLEXPART-COSMO (V8C2.0)
 - Lagrangian Particle Dispersion Model
- Input: COSMO-7
 - 7 km x 7 km resolution
 - MeteoSwiss analysis
- Backward simulations for individual sites
 - 3-hourly release of 50'000 particles per site
 - 4 day backward or until out of domain
 - Different release heights to account for smoothed model topography
- Background from observations or larger scale models

stephan.henne@empa.ch

COSMO-7 model domain

$$J = \frac{1}{2} (x - x_b)^T B^{-1} (x - x_b) + \frac{1}{2} (M x - \chi_o)^T R^{-1} (M x - \chi_o)$$

Data-mismatch (R)

- Uncertainty set proportional to model sensitivity ($\sigma_{min}, \sigma_{srr}$)
 - Estimated iteratively from model residuals
- Covariance determined from autocorrelation function of residuals

Likelihood optimisation

[Michalak et al., 2005]

By site:
$$\sigma_{min}$$
, σ_{srr} , f_b

By region: σ_E

Swiss non-CO₂ GHG Emissions

Globally: L, T,
$$\tau_B$$

https://doi.org/10.5194/egusphere-egu2020-17176

A-priori emissions (B_E)

- Uncertainty set for individual country (σ_E) or category by country
 - Total CH: N₂O ±40 %, CH₄ ± 18 %
- Covariance between same emission categories in different regions
 - Distance-dependent length scale: L
 - Time-dependent length scale: T

A-priori Baseline (B_B)

- Uncertainty as from statistical baseline fit (REBS; scaling factor f_B)
- Covariance according to temporal length scale (τ_B)

[Henne et al., 2016, ACP]

Swiss Methane Emissions (2013-2019)

- National total very similar and well established by inversion
- Spatial distribution less well constrained by current network
- East/west shift in emission distribution (potentially boundary effect)

Swiss non-CO₂ GHG Emissions https://doi.org/10.5194/egusphere-egu2020-17176 stephan.henne@empa.ch

Swiss Methane Emissions (2013-2019)

Temporal evolution

Seasonal variability

Spring maximum & winter minimum Seasonal amplitude: ±20 %

Based on 4 sensitivity inversions with seasonal variability per year

Based on 8 sensitivity inversions per year

https://doi.org/10.5194/egusphere-egu2020-17176

Swiss non-CO₂ GHG Emissions

stephan.henne@empa.ch

Swiss Nitrous Oxide Emissions (2017-2019)

- Absolute increase strongest on central and eastern Swiss Plateau
- Relative increase strongest in Southern Switzerland (indirect natural)
- Considerable decreases limited to urban areas (waste, transport, heating)

95 % CI

Seasonality of N₂O Emissions

- Pronounced seasonality in soil emissions (±50 % summer/winter)
- Variability from year to year
- Clearest seasonal signal from agricultural soils
- Emissions from (semi-)natural soils peak earlier in the year than from agricultural soils

Swiss Synthetic Gas Emissions Based On Jungfraujoch Observations

Tracer-ratio method relying on CO inventory and observations on days with dominating Swiss influence as estimated from FLEXPART-COSMO source sensitivities.

Swiss non-CO₂ GHG Emissions https://doi.org/10.5194/egusphere-egu2020-17176 stephan.henne@empa.ch

\mathbf{CH}_4

Swiss CH_4 emissions (2013-2019): **197 ± 18** Gg yr⁻¹, 1.5 % smaller than inventory N_2O

- Swiss N₂O emissions (2017-2019): **10.7 ± 3.5** Gg yr⁻¹, 20 % larger than inventory
- Strong seasonal variability largest for agricultural soils
- CH_4 and N_2O
- Considerable uncertainty introduced by boundary conditions (& availability of observational data)

Synthetic gases

- Jungfraujoch-based tracer ratio method to estimate Swiss emissions
- Measurements at tall tower Beromünster commenced August 2019
- Inverse modelling results expected later 2020

Results included in 2020 submission of Swiss NIR: Annex 5

Acknowledgements

- Financial support
 - Federal Office for the Environment (FOEN/BAFU)

- Measurements Beromünster
 - Markus Leuenberger, Rüdiger Schanda (Uni Bern)
 - David Steger, Beat Schwarzenbach, Thomas Bruggisser, Joachim Mohn (Empa)
- Measurements Jungfraujoch
 - David Steger, Martin Steinbacher (Empa)
 - Martin K. Vollmer, Stefan Reimann (Empa, AGAGE)
- Measurements Schauinsland
 - Frank Meinhardt (UBA)

Bundesamt für Umwelt BAFU