

Motivation

Study of tropospheric nitrogen dioxide (NO₂):

- Mainly emitted by anthropogenic activities
- Participation in tropospheric ozone formation
- and formaldehyde (HCHO)
- Intermediate product in the oxidation of most volatile organic compounds (VOCs) Tracer of VOCs
- Focusing on Brussels area:
- NO₂ concentrations among the highest in Europe as observed by in-situ stations and satellite instruments
- HCHO concentrations have never been presented for such a big time period (March 2018 -December 2020)

Instrumentation

- A. Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) instrument
- \rightarrow Measures continuously in both UV and Vis wavelength ranges in dual-scan configuration
- \rightarrow Dual-scan configuration (Fig. 1): One vertical scanning towards the blue azimuthal direction (the so-called main azimuthal direction in 9 elevation angles) and 9 azimuthal measurements at one elevation angle (2 degrees)
- \rightarrow Capable of determining the vertical and horizontal distribution of trace gases

Fig.2: The MAX-DOAS instrument in Brussels.

Fig.1: The dual-scan experimental set-up of the BIRA-IASB MAX-DOAS instrument. The colored dots show the locations of the in-situ stations in Brussels.

B. TROPOMI instrument

- UV-Vis-NIR-SWIR spectrometer
- Atmospheric composition measurements with high spatio-temporal resolution (ground > Clear seasonal cycle for both trace gases pixel of 3.5 x 7 km² and 3.5 x 5.5 km² since 6 August 2019) related to air quality, \succ Maximum concentrations: NO₂ during cold months and HCHO during warm months, as expected climate forcing, ozone and UV radiation
- Daily global coverage
- Data continuity between Envisat Satellite and NASA's Aura mission and the launch of Sentinel-5 (period between 2017 and 2023)

Fig.3: Tropospheric NO₂ columns derived from the TROPOMI and the MAX-DOAS instrument on 06 June 2018 near the measurement site in Uccle (overlaid onto OSM Standard layer)

References

- Friedrich, M. M., Rivera, C., Stremme, W., Ojeda, Z., Arellano, J., Bezanilla, A., García-Reynoso, J. A., and Grutter, M.: NO₂ vertical profiles and column densities from MAX-DOAS measurements in Mexico City, Atmos. Meas. Tech., 12, 2545–2565, https://doi.org/10.5194/amt-12-2545-2019, 2019.
- Sinreich, R., et al. "Parameterizing radiative transfer to convert MAX-DOAS dSCDs into nearsurface box-averaged mixing ratios." Atmospheric Measurement Techniques 6.6 (2013): 1521-1532.
- Kreher, K., Van Roozendael, M., Hendrick, F., Apituley, A., Dimitropoulou, E., Frieß, U., ... & Anguas, M. (2019). Intercomparison of NO2, O4, O3 and HCHO slant column measurements by MAX-DOAS and zenith-sky UV-Visible spectrometers during the CINDI-2 campaign.

Tropospheric NO₂ and HCHO derived from dual-scan MAX-DOAS measurements in Uccle (Belgium) and application to S5P/TROPOMI validation

E. Dimitropoulou¹, F. Hendrick¹, M. M. Friedrich¹, G. Pinardi¹, F. Tack¹, A. Merlaud¹, C. Fayt¹, C. Hermans¹, F. Fierens² and M. Van Roozendael¹ ¹ Royal Belgian Institute for Space Aeronomy (BIRA-IASB), Brussels, Belgium; ² IRCEL-CELINE, Brussels, Belgium

MAX-DOAS: Measurements – Retrieval Strategy

- 1. DOAS Analysis
- Measured spectra to differential slant column density (DSCD) \rightarrow QDOAS spectral fitting software
- Fitting settings in the UV and in the VIS
- \rightarrow Same as during CINDI-2 Inter comparison campaign (Kreher et al., 2020)
- Measurement dataset \rightarrow March 2018 December 2019
- 2. OEM-based profile retrieval
- Main azimuthal direction Vertical scanning
- Application of the MMF inversion algorithm (Friedrich et al., 2019) • Use of quality-checked profile retrievals
- Cloud filter based on the measurements of a co-located pyrometer
- 3. Dual-scan retrieval strategy
- OEM-based profile retrieval cannot be applied in the other azimuthal directions (Fig. 1 \rightarrow red lines)
- A parameterization technique proposed by Sinreich et al. (2013) is applied to the dual-scan MAX-DOAS measurements
- Retrieval of NO₂ and HCHO near-surface volume mixing ratios (VMR) and vertical column densities (VCD) in all the azimuthal directions (Dimitropoulou et al., AMTD, 2020)
- An important variable is the horizontal sensitivity for the NO₂ \rightarrow until which distance from the instrument the measurements are representative for the NO₂ field

Seasonal variation of NO₂ and HCHO

 \succ NO₂ and HCHO near-surface VMRs and VCDs as retrieved in the main azimuthal direction

Weekend

Weekdav

Fig.7: Monthly HCHO (left panel) VCD and (right panel) VMR means covering two years of MAX-DOAS measurements.

and weekends

Fig.4: MAX-DOAS technique for tropospheric measurements (© University of Bremen IUP DOAS).

Fig.5: Box and whisker plots representing the seasonal horizontal sensitivity as derived from all the azimuthal viewing

- directions for the Vis and
- UV spectral ranges.

Dual-scan seasonal variation of NO₂ and HCHO

borders show the Vis VMRs. The length of each line represents the seasonally-averaged horizontal sensitivity. Different color scales are used per season.

NO, and HCHO TROPOMI validation

• Dual-scan MAX-DOAS tropospheric NO₂ and HCHO measurements in every MAX-DOAS azimuthal direction are compared with a weighted average of TROPOMI columns as measured in coincident pixels with the weighting being determined by the MAX-DOAS horizontal sensitivity segment crossing every pixel. → The correlation coefficient is good but the TROPOMI values are systematically lower than the MAX-DOAS measurements (slope values around 0.4-0.7 and 0.7 for NO₂ and HCHO, respectively).

Fig. 11: Seasonal scatter plots between the tropospheric NO₂ columns derived from the dualscan MAX-DOAS observations and the TROPOMI collocated pixels.

Impact of systematic uncertainties in the satellite retrieval \rightarrow A-priori profile shape \rightarrow Recalculation of the TROPOMI/S5P VCDs using vertical profiles from MAX-DOAS measurements \rightarrow Change of the a-priori profile significantly improves the agreement between TROPOMI and MAX-DOAS data sets for both

Fig. 14: Scatter plots between the tropospheric HCHO columns derived from the dual-scan MAX-DOAS observations and the re-calculated TROPOMI columns. **Fig. 13:** Seasonal scatter plots between the tropospheric NO₂ columns derived from the dualscan MAX-DOAS observations and the re-calculated TROPOMI tropospheric columns

Take-home message

- \rightarrow The dual-scan MAX-DOAS measurements conducted in an urban area, like Brussels can:
- \rightarrow better characterize the spatial variability of important pollutants, such as NO₂ and HCHO
- \rightarrow improve our knowledge about the seasonality and the hotspots of NO₂ and HCHO in Brussels

Fig.6: Monthly NO₂ (left panel) VCD and (right panel) VMR means covering two years of MAX-DOAS measurements

Fig.8: Seasonal NO₂ (left panel) VCD and (right panel) VMR mean values during weekdays

 \rightarrow Clear traffic contribution during II seasons (28 – 40 %)

Fig. 12: Scatter plot between the tropospheric HCHO columns derived from the dual-scan MAX-DOAS observations and the TROPOMI collocated pixels.

 \rightarrow Two years of dual-scan MAX-DOAS NO₂ and HCHO near-surface VMRs and VCDs in Uccle, Brussels are presented here \rightarrow improve validation results of satellite air quality measurements with high spatial resolution, such as TROPOMI/S5P