
4) Validation
• Model performance is initially assessed using an 80:20 random permutation ‘shuffle-

split, cross-validation. 

• Convergent R2 scores for the training and testing datasets, and MAE approaching the 

machine error of the ATM are good indicators that overfitting has been avoided through 

appropriate hyperparameter tuning. Future work will look at nested cross validation. 

• Monthly Gridded Mean roughness maps exhibit good qualitative agreement with SMOS 

Ice Thickness (Huntemann et al., 2014; shown below, right for the Laptev Sea and East 

Siberian Sea) and with ASCAT backscatter maps.

5) Time Series Analysis
• A six year time series for April surface roughness is displayed below.

• This product is particularly adept at distinguishing newly formed sea ice, and thus is a 

good tool for visualizing polynyas. Below we present a surface roughness time series 

of the North Water Polynya, note the development of northern ice arches in 2009 and 

2010, and southern ice arches in 2011 and 2012. 
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1) Motivation
• Surface Roughness, defined as the standard deviation of elevations within an footprint 

minimized to a best fit plane, is a crucial parameter in many climate and oceanographic 

studies, constraining momentum transfer between the atmosphere and ocean, 

providing preconditioning for summer melt pond extent, while also closely related to ice 

age. 

• High resolution roughness estimates from airborne laser measurements are limited in 

spatial and temporal coverage. Pan-Arctic satellite roughness have remained elusive 

and do not extended over multi-decadal time-scales.

3) Methodology
• The objective is to generate a training data set of coincident angular reflectance 

signatures (from MISR) and roughness measurements (using LiDAR from IceBridge 

ATM, Airborne Topographic Mapper). This is then applied to a machine learning 

regression scheme to provide a mapping from specular anisotropy as sampled from 

MISR to surface roughness. Model performance is assessed, then is applied to 

individual swaths that can be stacked, generating pan-Arctic roughness maps.

• Cloud masking of scenes that include sea ice with high accuracy remains a substantial 

open problem for imagery from the MISR satellite. We exploit the inherent time located 

orbital path geometry of all satellites on the Terra platform and implement the MOD35 

cloud mask from Terra MODIS. This cloud mask uses more bands over a wider window 

resulting in an accuracy in excess of 90%.

• The training dataset is filtered to remove data that is of poor quality (such as low shot 

density of elevation measurements) and, after applying a feature subset using nested 

cross-validation, is modelled using support vector regression with a radial basis function 

kernel. Grid-Search cross-validation is used to tune the hyperparameters.

6) Conclusions
• We present a new sea ice surface roughness product from calibration of LiDAR 

elevation measurements from the ATM with angular reflectance signatures from MISR

• Monthly Gridded Mean roughness maps exhibit good qualitative agreement with SMOS 

Ice Thickness, and with ASCAT backscatter maps.

• This product is particularly adept at distinguishing newly formed sea ice, and thus is a 

good tool for visualizing polynyas.

2) Background

• The Multi-angle Imaging SpectroRadiometery (MISR) instrument provides near 

simultaneous retrieval of images at nine camera angles; use of angular reflectance 

signatures to derive surface roughness has proven successful on continental ice (Nolin 

et al., 2002) using a combination of aftward and forward images known as the NDAI 

(Normalized Difference Angular Index)

𝑁𝐷𝐴𝐼 =
𝐴𝑓𝑡 − 𝐹𝑜𝑟𝑒

𝐴𝑓𝑡 + 𝐹𝑜𝑟𝑒

• The NDAI is highly empirical; over sea ice it is not possible to make direct comparisons 

with NDAIs retrieved between different scenes.
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• In order to derive roughness measurements from 

IceBridge over a spatially coherent footprint with the 

1.1km resolution from MISR, probability distribution 

functions of coincident elevation measurements are 

generated, and the standard deviation calculated. An 

example of the elevation point cloud for a MISR Pixel 

(below) and the corresponding probability distribution 

function (right) is provided. Only the derived 

roughness is used for modelling. 

M
e

a
n

 S
u

rf
a

c
e

 R
o

u
g

h
n

e
s

s
(m

)


