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* Global analysis of sites with potential future formation of glacial lakes
* Hazards
* Risks

* Opportunities
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Global ice thickness data (Farinotti et al. 2019
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DEM minus ice
thickness
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Calculation time RGI region 11 (Central Europe): about 1h

e |dentify sinks
e Fill sinks
e Min. 4x4 pixels
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(4 models, 3927 glaciers / 2091 km? each)
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Shapefile & .csv
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e Shapefile with
overdeepenings

e CSV file per region
(w/ lake attributes)
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First results: Central Europe (RGI region 11)

All future lakes

Number of sinks Total volume (m3) Total area (m2)  Mean depth (m)
Huss & Farinotti 434'727'626 26'285'625

GlabTop2 1'120'912'383 33'623'125
Maussion 1'659'341'018 52'366'250

Composite 281'324'392 16'415'625 Performance of

models in view of
identifying

overdeepenings

Largest values individual lake needs to be

Volume (m3) Max depth (m)  Mean depth (m) evaluated

Huss & Farinotti 26'146'011 1'132'500

GlabTop2 199'305'748 2'392'500
Maussion 228'074'247 1'730'000
Composite 48'382'059 1'187'500
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Moment of formation

Q‘ frontiers
in Earth Science

Intersection of overdeepenings with future glacier
extents from GloGEM (Global Glacier Evolution Model)
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A new model for global glacier
change and sea-level rise

Matthias Huss "** and Regine Hock™*

of Hydraucs, Hydrology and Glaciology Zurich, Switzertand, * Department of Geosclerces,

iy of Alsska Farbanks, Farbanks, AK, USA

The anticipated retreat of glaciers around the globe will pose far-reaching challenges
to the management of fresh water resources and significantly contribute to sea-level
rise within the coming decades. Here, we present a new model for calculating the
twenty-first century mass changes of all glaciers on Earth outside the ice sheets. The
Global Glacier Evolution Model (GloGEM) includes mass loss due to frontal ablation at
marine-terminating glacier fronts and accounts for glacier advance/retreat and surace
elevation changes. Simulations are driven with monthly near-surface air temperature
and precipitation from 14 Global Circulation Models forced by RCP2.6, RCP4.5, and
RCP8.5 emission scenarios. Depending on the scenario, the model yields a global glacier
volume loss of 25-48% between 2010 and 2100. For calculating glacier contribution
to sea-level rise, we account for ice located below sea-level presently displacing ocean
water. This effect reduces the glacier contribution by 11-14%, so that our model predicts
a sea-level equivalent (multi-model mean 1 standard deviation) of 7924 mm (RCP2.6),
10828 mm (RCP4.5), and 157+31 mm (RCP8.5). Mass losses by frontal ablation
account for 10% of total ablation globally, and up to ~30% regionally. Regional equilibrium
line altitudes are projected to rise by ~100-800m until 2100, but the effect on ice
wastage depends on initial glacier hypsometries.
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_ - N\ - Moment of lake formation,

considering RCP2.6 and RCP8.5

* Snapshots for 2 -3 points in time
(e.g. 2035, 2050, 2100)
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Existing vs. future lakes
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Shugar et al. 2019: (.\(\@\
— Global inventory of glacial lakes (Earth Engine), comparison 1990 to 2015 Q’AQ(;@‘('Q

Regional comparisons of
existing vs. future glacial lakes:

Possible further
expansion ~—— Actual lake

development

Y
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Emmer et al. (in press), modified

Year —
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Hazard estimation

Susceptibility for mass movement impacts: N\
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Downstream effects:
e Simple flow routing (D8 approach, no flow
spreading; max. reach = 3° angle of reach)

; .‘.(3) Watershed area
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Include other triggers? (permafrost,
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seismicity, temperature, rainfall
extremes)?
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Angle of reach for
slopes >30°
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Mal et al. (in prep.) 79°E
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B) Urbanization
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Dependence on mountain water
resources (2041-2050)

Potential dependence on
mountain water resources

Other (global) studies / M Essential, but vastly insuffjc_i?r]t_-_-_-_-_
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catchment area <5%
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