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Why do diffractions matter? @

» Diffractions are caused by small-scale subsurface heterogeneities, e.g.:

» [Seismics:| faults, pinch-outs, caves...

» [GPR:] buried small objects, caves, water intrusions in glaciers...
» Diffracted waves do not obey Snell's law, i.e. they are scattered into all directions
— Superior illumination than reflections

— High-resolution information about the subsurface
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Introduction @

» GPR data and seismic data exhibit similar wave propagation phenomena
— Methods from applied seismics can be adapted to GPR data

» Established tomographic methods rely on reflections or diving waves and require
multiple source-receiver offsets

» GPR acquisitions are often zero-offset measurements

v

In zero-offset data only diffractions encode velocity information

— Diffraction wavefront tomography: depth-velocity-model building for zero-offset
data [Bauer et al., 2017, Bauer et al., 2018]

» Successful applications to multi-channel seismic [Bauer et al., 2017],
single-channel seismic [Preine et al., 2020] and passive-seismic data
[Diekmann et al., 2019]
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From applied seismics to GPR @

» The different scales have to be accounted for

» Typical magnitudes and units:

Applied seismics GPR
Distances 10°m — [km] 10'm — [m]
Traveltimes 10%s — [g] 10~"s — [ns]

Velocities | 10°m/s — [km/s] | 103 m/s — [m/ns]
Frequencies | 10'Hz — [HZ] 108 Hz — [MHZ]
Wavelengths 10'm — [m] 107t m — [cm]

» Seismic velocities typically increase with depth, electromagnetic velocities
decrease with depth
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Diffraction wavefront tomography
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Wavefront attributes @

» Diffraction separation by coherent wavefield subtraction [Schwarz, 2019] yields
diffraction-only data

» Automatic extraction of wavefront attributes (o, R) from diffraction-only data
via coherence analysis [Jager et al., 2001]

» Hyperbolic second-order approximation of diffraction traveltime moveout

. 2 2
At?(xo, to) = (to 4o MNX Ax) n 2t0( COSR‘X Ax2>

Yo Vo
N——
slope curvature

with o emergence angle of diffracted wavefront, R: wavefront radius,
to: zero-offset two-way time, vo: near-surface velocity
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Wavefront tomography: image space @

X0__— » Efficient and stable inversion scheme for smooth

R depth-velocity models
[Duveneck, 2004, Bauer et al., 2017]
» Initial localizations P* of data points obtained by
downward kinematic ray tracing starting from
Vo (X0, ot) into constant initial model v(x, z) = v
(image space) until t/2 =Ty =0

» Initial localizations are quite stable because they do
b3 -
P not depend on second-order curvature attribute R
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Wavefront tomography: model space @

X0
R \
V(X, Z) » Upward dynamic ray tracing starting from P*
yields modeled attributes (xo, To, &, R)
Vo \ » Goal: Find velocity model v(x, z) such that

P P* = P, i.e. the true scatterer locations
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Wavefront tomography: inverse problem @

» Data parameters d: n automatically picked data points (xo, To, &, R);

» Velocity model is defined by B-spline functions on given grid of n, x n, knots
» Model parameters m: B-spline velocity coefficients and ray start points (x, z)
» Minimize misfit between measured data d and modeled data d,,,,q = f(m) by
damped weighted least-squares

V(m) = ;H(d — dumod) sz + A[Ouv(x, 2), 02v(x, 2)]

» Output: smooth velocity model v(x, z) and localizations of data points

» The method is equally applicable in 3D
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Synthetic diffraction-only GPR example
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Synthetic diffraction-only GPR example @

» Synthetic diffraction-only GPR data simulating glacial setting
» 100 randomly-distributed diffractions, Gaussian noise added

» Workflow:

1. Estimation of wavefront attributes via coherence analysis
2. Automatic picking of data points based on their coherence

3. Velocity inversion and scatterer localization with wavefront tomography
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Synthetic example: data and attributes
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Synthetic example: picks Ziiil
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Synthetic example: initial model with localizations
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Synthetic example: final model with localizations
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Synthetic example: correct model w/ diffractor positions @
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Field GPR data from a glacier
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Field GPR data from a glacier @

» Field GPR profile acquired at Von Post glacier, Svalbard (Norway)
» Workflow:

1. Diffraction separation via coherent wavefield subtraction

2. Estimation of wavefront attributes on diffraction-only data

3. Automatic picking of data points based on their coherence

4. Velocity inversion and scatterer localization with wavefront tomography
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GPR Data from Von Post glacier, Svalbard (Norway)
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GPR Data from a glacier: diffraction coherence
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GPR Data from a glacier: emergence angle
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GPR Data from a glacier: wavefront radius

Lateral distance [m]
0 500 1000 1500 2000

@ 500 £
£, 0
o 400 >
E o
= 300 ®
> L
g 200 §
. 100 ‘©

=

(© Authors. All rights reserved Application of diffraction wavefront tomography to GPR data from a glacier 24



GPR Data from a glacier: picks
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Field GPR data: initial model (vp = 0.1 m/ns) @
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Field GPR data: initial model with localizations @

Lateral distance [m]
0 500 1000 1500 2000 2500

Velocity [m/ns]

(© Authors. All rights reserved Application of diffraction wavefront tomography to GPR data from a glacier 27



Field GPR data: initial model @
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Field GPR data: final model @
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Field GPR data: final model with localizations @
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Conclusions
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Conclusions @

» Synthetic example: velocity gradient and scatterer locations correctly inverted
» Field data example: velocity model and localizations consistent with the data
» Automatized depth-velocity model building for GPR data

» Joint localization of scatterers yields additional subsurface information

» Applicable to all seismic and GPR data with rich diffracted wavefield

» No offsets required, merely sufficiently dense time sampling and trace spacing

» Estimation of second-order wavefront attributes can be challenging
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Outlook @

» Applications to different GPR datasets (feel free to contact me if you would like
to provide data: alex.bauer@uni-hamburg.de)

» Applications to zero-offset/low-fold seismic data (P-Cable data, vintage
academic data) [Bauer et al., 2020, Preine et al., 2020]

» Passive-seismic applications [Diekmann et al., 2019]

» Improved diffraction separation [Schwarz, 2019]

» Unsupervised identification and tagging of diffractions [Bauer et al., 2019b]
» Enforced focusing of diffractions during the inversion [Bauer et al., 2019a]

» Applications in 3D [Bauer et al., 2020]
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