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Introduction 
• On the basis of the Abel transform application, a two-step methodology is 

proposed to infer both the intensity-frequency distribution and the size-
frequency distribution of convective vortices, including dust devils, in pressure 
time-surveys on Mars. This methodology is applied with success to Mars 
Science Laboratory (MSL) convective vortices. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• An example  of  pressure (a), wind direction (b) and speed (c) measurements  for a dust devil 
encounter in New Mexico during a month-long single-station survey in 2014. Data points are 
acquired at 1 s intervals, and the curves are a simultaneous fit to the three parameters by an 
analytical vortex model (from Lorenz, 2016). 
 



Theory: intensity-frequency 
distribution (I) 

• The radial distribution of the pressure drop in convective vortices is 
described by the Lorentzian profile  
 
 

• The statistical distribution (pdf)  w of measured pressure drops  ∆P  
and the statistical distribution (pdf) of core pressure drops ∆P0  in 
detected vortices are related by the Abel integral equation 
 
 
 

• Here, ∆Pmin is the minimum detection level of the vortex signature 
against the background pressure noise 
 
 
 

 

( ) ( ) 12 2
0 1 4P r P r W

−
∆ = ∆ +

( )
( )

( ) ( )0min 0
03 2

0 min 0

d
2 P

PP Pw P P
P P P PP

ρ∞

∆

∆∆ ∆
∆ = ∆

∆ −∆ ∆ −∆∆ ∫



Theory: intensity-frequency 
distribution (II) 

• In the case of no correlation between ∆P0 and the vortex core width 
W the probability density functions for recorded vortices and for 
the whole population of vortices are related via 
 
 
 

• Here, an overbar denotes averaging for the whole population of 
vortices and the Abel integral equation reads 
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Results: intensity-frequency 
distribution (I) 

• For power distributions and in case of no correlation between ∆P0  
and W  
 

 
      i.e. the measurements provide an unbiased estimate. 
• In general cases and in the limit ∆P0 >> ∆Pmin  

 
 
 
 

 
• The distribution of central pressure drops in the population of 

detected vortices  has thus a less steep slope than the distribution 
of measured pressure drops.  
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Results: intensity-frequency 
distribution (II) 

• Cumulative distribution of pressure drop magnitudes. Three distributions of pressure drop magnitudes 
from three separate Mars missions are shown as the total number of vortices detected above a given 
pressure drop magnitude in pascals. MSL vortices are open circles, Pathfinder vortices are plus signs, and 
Phoenix vortices are triangles. The small filled squares show the MSL detected vortices plus the candidates 
which were eliminated because they were classified as too ambiguous to be confident detections. Power 
law fits were applied to the cumulative distributions of each mission (solid lines) and the magnitude of 
each power law slope, α, is shown in the legend (MSL  α=−2.77 , Pathfinder α=−1.73 , and Phoenix 
α=−2.48 (from Steakley and Murphy, 2016; their Fig. 9)). 

 



Results: intensity-frequency 
distribution (III) 

• Table 1 
• Inferred value of exponents in the power-law complementary cumulative distribution of 

pressure drops in Martian convective vortices, including dust devils. In the last column, the 
first values are derived under an assumption of no correlation between the vortex width W 
and the central pressure drop ∆P0; the values in parentheses correspond to assumed 
proportionality between the vortex width squared and the central pressure drop. 

   Observed distributions 
of ∆P (Steakley and 

Murphy, 2016) 

Inferred 
distributions of ∆P0 

for encountered 
vortices 

Inferred distributions of ∆P0 
for the whole population of 

vortices 

Pathfinder 
vortices 

−1.73 −1.23 −1.73 (−2.23) 

Phoenix 
vortices 

−2.48 −1.98 −2.48 (−2.98) 

MSL vortices −2.77 −2.27 −2.77 (−3.27) 



Theory: size-frequency distribution(I) 

• The statistical distribution (pdf)  w of measured pressure profile   
“full width at half maximum”  Γ  and the statistical distribution (pdf) 
of the width W of detected vortices are related by the Abel integral 
equation 
 
 
 
 

• In case of no correlation between ∆P0  and W  this equation acquires a 
more compact  form; ρ∗(∆P0) and ρ∗(W) refer to the whole population of 
vortices: 
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Theory: size-frequency distribution(II) 

 
 

• For by a power law with the exponent  
 
 

• the emerging Abel equation 
 
 

• can be inversed 
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Results: size-frequency distribution; 
applications to MSL vortices (I) 

• We follow an approximate matrix method (see, a classical paper by 
Wicksell (1925) and further references in, e.g., Pretzler et al. (1992) 
and De Micheli (2017)), which is used when w(Γ)-values are given 
as a table of N numbers, and apply the matrix method to MSL 
vortices (Steakley and Murphy, 2016) possessing a power law 
intensity-frequency distribution with the exponent  k=3.77. 

• Table 2 
• The number  of vortices N that have a pressure “profile full width at half maximum” 

exceeding the fixed Γ-value (in seconds); calculated from the supplementary material to 
(Steakley and Murphy, 2016)  
 
 

 

 Γ(sec) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

N ( >Γ ) 

245 243 241 206 166 127 100 87 66 45 31 24 20 15 10 9 



Results: size-frequency distribution; 
applications to MSL vortices (II) 

 
• The complementary cumulative function P(>Γ)  inferred from data in Table 2 (small black 

squares) and the exponential fit to it (solid line). The values of Γ are in seconds. 
 
 
 
 
 
 
 
 
 
 

• The differential distribution computed using an exponential fit 
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Results: size-frequency distribution; 
applications to MSL vortices (III) 

• The normalized to unity differential distribution function ρ∗(W)  inferred by the matrix 
method (small black squares) and the exponential fit to it (solid line). The values of W are in 
seconds.  
 
 
 
 
 
 
 
 

 
•  Exponential fit: 

• As one would expect a priori, the distribution ρ∗(W) is steeper than 
w(Γ). 
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Discussion and summary 
• Using the Abel transform, a two-step method has been developed to determine the 

marginal statistical distributions of convective vortices, including dust devils, on their 
intensity (pressure drop in the vortex center) and size (diameter), based on statistics of 
transient pressure drops recorded when the vortices pass near a pressure sensor placed 
on the planet’s surface. This two-step technique has been applied with success to Mars 
Science Laboratory (MSL) convective vortices. 

• A separate difficult problem is the recalculation of Γ -values, and consequently of W-
values, from time intervals to spatial dimensions. In principle, it is necessary knowing 
the translational velocity U of the vortex relative to the pressure sensor for each 
detectable vortex. Unfortunately, such data are not available for all MSL vortices and we 
use for the recalculation that U=7.6 m/s which is an approximate average value of the 
median wind speed (Kahanpää et al., 2016).  

•  We note how the Abel inverse transform is mathematically classified as a “mildly” ill-
posed problem (cf. De Micheli, 2017), but a stable solution can be obtained after 
regularization of the problem, particularly for monotonic differential distributions, as 
shown in this contribution. 

• The proposed method can also be used for post-processing the data obtained in 
pressure time-series surveys for dust devils in arid and semi-arid locations on Earth 
(Lorenz and Lanagan, 2014; Jackson and Lorenz, 2015) and, more generally, for inferring 
statistical properties of populations of atmospheric vortices of convective origin based 
on meteorological in situ measurements. 
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