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Welcome to our presentation!



The parameterization of hydrological models in ungauged catchments is 
one of the oldest tasks in hydrology and still remains challenging. 
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The increased availability of large-sample data sets in recent years provides 
new opportunities for regionalization. 

Using a large-sample data set, we systematically test and compare a large number of regionalization approaches to 
understand where and why models succeed or fail in predicting discharge in ungauged catchments. 

Motivation



The 600+ study catchments

We use data of more than 600 catchments 
from the publicly available data sets of 
Newman et al. (2015) and Addor et al. 
(2017; CAMELS).

The catchments cover a wide range of 
hydroclimatic and topographic conditions.

Fig.: Distribution of the study catchment and their hydroclimatic
variability (from Pool et al., 2019).



Modelling approach

HBV model:
The semi-distributed HBV-light model was used. 
Parameter meaning and values are listed in the 
appendix. (Seibert and Vis, 2012)

Calibration with NPE:
The model was calibrated for a 10 year time period 
using the partly non-parametric modification of the 
Kling-Gupta efficiency NPE proposed by Pool et al. 
(2018).

Evaluation with NPE and KGE:
Streamflow was predicted for each of the hypothetically 
ungauged basins with 19 regionalization approaches 
and evaluated using NPE and the Kling-Gupta efficiency 
KGE (Gupta et al., 2009)Fig.: Structure, variables, and parameters of the HBV 

model (adapted from Uhlenbrook et al., 1999).

Most important: we use NPE and KGE to evaluate model performance. 
You will see how different conclusions can be!



 
Regionalization approach Description: origin of the donated parameter values 

Incl. 
volume 

Incl. spat. 
distance 

(1) Upper benchmark The receiver catchment itself. - - 
     

(2) Lower benchmark (random) 1000 randomly selected parameter values. - - 
(3) Lower benchmark (US) All 600+ catchments. - - 

     
(4) Geographic area classification All catchments within the same watershed region (HUC2) from USGS (2020). -   
(5) Climate classification All catchments within the same climate group (aridity; precipitation seasonality; snowfall 

fraction) from Berghuijs et al. (2014). 
- - 

(6) Water balance classification All catchments within the same water balance group (groundwater loosing or gaining).   - 
(7) Signature classification All catchments within the same signature group (runoff ratio; mean annual, winter, and 

summer Q; q95; half-flow date) from Jehn et al. (2020). 
   

 
 

(8) Best donors The three best donor catchments available. - - 
(9) Random donors Three randomly selected catchments from all 600+ catchments. - - 

(10) Closest donors The three geographically closest catchments. -   
(11) RMSE The three catchments with the smallest RMSE for 12 observations in the ungauged basin    
(12) RMSE & distance The three catchments that are among the ten best ones in terms of RMSE and are 

geographically closest. 
    

(13) Attributes The three catchments that are most similar in terms of attributes (area; aridity; 
precipitation seasonality; snowfall fraction; wetland fraction; clay fraction; forest 
fraction). 

- - 

(14) Signatures The three catchments that are most similar in terms of hydrological signatures (runoff 
ratio; mean annual Q; mean half-flow date; q95; q05; recession slope). 

  - 

(15) Distance & attributes The three catchments that are geographically closest and most similar in terms of 
attributes. 

   

(16) Distance & signatures The three catchments that are geographically closest and most similar in terms of 
hydrological signatures. 

    

(17) Attributes & signatures The three catchments that most similar in terms of attributes and hydrological signatures.   - 
(18) Distance & attributes & 

signatures 
The three catchments that are geographically closest and most similar in terms of 
attributes and hydrological signatures. 

    

     
(19) Qobs transfer (closest) Mean streamflow time series from the three geographically closest catchments. -   

 

Tested regionalization approaches 19 regionalization approaches!

We tested methods that are 
among the most commonly used 
ones.

And compare them against 
benchmarks.

We always transferred 
entire parameter sets.



Results 1: Most sensitive parameter per catchment

Parameter sensitivity defined as:
Mean change in model performance after a change in 
parameter value of +/- 2.5% of the parameter range 
used during calibration..

Parameter sensitivity is spatially 
well-organized.

Does that help us to find the best 
donors?



Results 2: Regionalization performance

The evaluation criteria influences how 
we rate a regionalization approach.

Look for example at the effect of 
having good volume information (method 
11 ,12), it is much more important for 
KGE than for NPE.

Can you find more examples? 



Results 3: The best regionalization approaches
Lets focus on NPE:

The availability of volume information is 
important to choose donors.

If no volume info is available, then spatial 
proximity might be helpful to guide the 
selection of donors.

A simple averaging of time series from 
neighboring basin can be surprisingly good.

… we still need to do some more work to 
explore the spatial pattern.



Conclusions

Lesson learnt 1:
Good donors do exist, but are hard to find.

Lesson learnt 2:
Better use a random donor than random parameter values.

Lesson learnt 4:
A few streamflow gauges might improve your predictions.

Lesson learnt 5:
Spatially close donors might improve your 
predictions.

Lesson learnt 3:
The choice of the evaluation criteria can influence the 
performance of a regionalization approach.
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Appendix: HBV model parameters


