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Motivation

@ The parameterization of hydrological models in ungauged catchments is
one of the oldest tasks in hydrology and still remains challenging.

@ The increased availability of large-sample data sets in recent years provides
new opportunities for regionalization.

Usicg a barge-sampte data set, we systematically test and compare a barge number of regimalization approaches to
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The 600+ study catchments
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Fig.: Distribution of the study catchment and their hydroclimatic

variability (from Pool et al., 2019).




Modelling approach
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Fig.: Structure, variables, and parameters of the HBV
model (adapted from Uhlenbrook et al., 1999).

Most important; we ase NFPE and /fff to evaluate model /ae/vfo/émwa,
You wit? see how c//ffe/ve/ﬂf conclusions can be/

HBV model:

The semi-distributed HBV-light model was used.
Parameter meaning and values are listed in the
appendix. (Seibert and Vis, 2012)

Calibration with NPE:

The model was calibrated for a 10 year time period
using the partly non-parametric modification of the
Kling-Gupta efficiency NPE proposed by Pool et al.
(2018).

Evaluation with NPE and KGE:

Streamflow was predicted for each of the hypothetically
ungauged basins with 19 regionalization approaches
and evaluated using NPE and the Kling-Gupta efficiency

KGE (Gupta et al., 2009) ‘@ ® \



Tested regionalization approaches

S TS Incl. Incl. spat.
Regionalization approach Description: origin of the donated parameter values volume distance
(1) Upper benchmark The receiver catchment itself. - -
(2) Lower benchmark (random) 1000 randomly selected parameter values. - -
(3) Lower benchmark (US) All 600+ catchments. - -
(4) Geographic area classification  All catchments within the same watershed region (HUC2) from USGS (2020). - v
(5) Climate classification All catchments within the same climate group (aridity; precipitation seasonality; snowfall - -
fraction) from Berghuijs et al. (2014).
(6) Water balance classification All catchments within the same water balance group (groundwater loosing or gaining). v -
(7) Signature classification All catchments within the same signature group (runoff ratio; mean annual, winter, and 4
summer Q; q95; half-flow date) from Jehn et al. (2020).

(8) Bestdonors The three best donor catchments available. - -
(9) Random donors Three randomly selected catchments from all 600+ catchments. - -
(10) Closest donors The three geographically closest catchments. - v

(11) RMSE The three catchments with the smallest RMSE for 12 observations in the ungauged basin v

(12) RMSE & distance The three catchments that are among the ten best ones in terms of RMSE and are v v
geographically closest.

(13) Attributes The three catchments that are most similar in terms of attributes (area; aridity; - -
precipitation seasonality; snowfall fraction; wetland fraction; clay fraction; forest
fraction).

(14) Signatures The three catchments that are most similar in terms of hydrological signatures (runoff v -
ratio; mean annual Q; mean half-flow date; q95; q05; recession slope).

(15) Distance & attributes The three catchments that are geographically closest and most similar in terms of 4
attributes.

(16) Distance & signatures The three catchments that are geographically closest and most similar in terms of 4 v
hydrological signatures.

(17) Attributes & signatures The three catchments that most similar in terms of attributes and hydrological signatures. 4 -

(18) Distance & attributes & The three catchments that are geographically closest and most similar in terms of v v

signatures attributes and hydrological signatures.

Mean streamflow time series from the three geographically closest catchments. - 4
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Results 1: Most sensitive parameter per catchment

Paraneter sensitivity is spatially
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Results 2: Regionalization performance
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Results 3: The best regionalization approaches
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Conclusions

Lesson loarnt 7

Good donors do exist, but are hard to fid, Lesson loarnt 4
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Lesson learnt 2

Better ase a random donore than random parameter vabues,

Lesson learnt 5;
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Appendix: HBV model parameters

Parameter Meaning Unit Min. value Max. value
Snow routine

Pprr Threshold temperature °C -2 2.5
Pgsrc Snowfall correction factor - 0.5 1.2
Pormax Degree-day factor mm°C~1d"! 0.5 10
Pcrr Refreezing coefficient 0 0.1
Pcwh Water holding capacity 0 0.2
Soil routine

Prc Max. soil moisture storage mm 100 550
Pgprra Shape coefficient 1 5
Prp Threshold for reduction of evaporation 0.3 1
Groundwater routine

Pyzr Max. storage in shallow groundwater box mm 0 70
Pperc Percolation from shallow to deep groundwater box mmd 1 0 4
Pxo Recession coefficient of fast response d-! 0.1 0.5
Pr1 Recession coefficient of intermediate response d-! 0.01 0.2
Py Recession coefficient of baseflow d-! 0.00005 0.1
Routing routine

ParaxBAs Length of weighting function d 1 5
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