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Regional geology of the active Mai‘iu fault
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Exhumed Fault Rock Sequence of the Mai’iu fault

TSP Mafic Gouges

scalciteveips’ ~10 cm, massive clay-rich gouges containing
s : 9% '

abundant saponite (up to 65%); a velocity-
strengthening, weak mineral (u<0.2). Given
sufficient areal distribution on the fault plane,
saponite gouges may have promoted aseismic slip
on the shallowest dipping most poorly oriented
part of the Mai’iu fault (dipping ~15-24°)

Ultracataclasites

5-40 cm-thick layer of dark grey or black to brick
red, ultracataclasite. Slip in this unit was at least
in part accomplished by distributed granular
flow of the ultrafine-grained mafic minerals.
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- = de& —— Foliated Cataclasites
#L27 calcite veins Fluid-assisted mass transfer of albite, quartz and
. calcite led to mineral transformation reactions
with continuous chlorite growth, creating a 1.5-3
m-thick zone of brittlely, faulted foliated
cataclasite containing abundant pseudotachylite
veins (5-40 mm thick), ultracataclasite seams (cm
thick), and late calcite veins (<1 mm thick). All
layers are variably folded.

Mafic (Ultra-)Mylonites

Mylonite zone is at least 60 m thick.

Slip within the mylonites was accomplished by
diffusion-accommodated rotation and grain-
boundary sliding of pre-existing, fine-grained (6—
35 um in diameter) epidote, actinolite, chlorite,
and albite.

Fabric strength (M-index) vs mean grain size in
different fault rock units of the Mai’iu fault
(N=number of samples analysed):
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Chlorite Geothermometry:
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Calcite-Twin Geothermometry and Paleopiezometry

Outcrop photographs of the Mai’iu fault rock units and photomicrographs

Estimated deformation temperatures
based on deformation twinning in calcite:

of calcite-filled veins that cross-cut them:

Mlzera 2019

3 “p«
B

boudmaged calcne eins necks :

100
RS
__ 80 Q{\.Q
: R\
£
&
2 60
a EoT Group 2
@
o
: /
2 40 %\- S
g Pear=—p |
= ~ ~ o
o Omag
20 99.036x0_,25
Rz < 0.66
»
a ¥ Ferrill et al. (2004)
0 1 2 3 4 5 6
Mean twin width (microns)

Reconstructed principal stress directions

(lower hemisphere, equal-area stereograms)
based on observed calcite-twin pairs as analysed
by the MIM-method (Yamaji, 2000):
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Graph of differential stress versus mean
twin density based on calcite:
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peak differential stresses of ~140-185 MPa
in the foliated cataclasites

Differential stress versus dynamically
recrystallized calcite grain size plot:
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Slip Behavior and Strength Evolution of the active Mai’iu fault

Our results combined with fault dislocation models of GPS velocities from campaign stations
in this region suggest a combination of brittle frictional and viscous flow processes within the
Mai'iu fault zone.

Schematic evolution of the rheology in the foliated cataclasites, active at a depth
range corresponding to T=150 to 270°C, approximately 8 to 15 km:
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Brittle fracturing of the
mafic mylonites and/or
foliated cataclasites
increases the
permeability of the fault
core, leading to the
infiltration of H20 + CO2-
rich fluids.

Interseismic: Time-dependent
and stress-dependent diffusive
mass transfer processes within
the foliated cataclasites
ultimately lead to the
development of
interconnected chlorite-rich
folia, promoting creep by
stable frictional sliding in the
chlorite-rich folia. Open
fractures are sealed with
hydrothermal calcite, and the
calcite veins are ductilely
sheared during interseismic
periods.

Gradually, precipitation
of albite, calcite and
guartz from an
intergranular fluid phase
in fractures and pores
cement and strengthen
the foliated cataclasites,
thus promoting elastic
strain accumulation (Late
interseismic).

Modified after Biemiller et al., submitted
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