Systematic detection and characterization of slow slip events along the Mexican subduction zone from 2000 to 2019

Mathilde Radiguet¹,

Ekaterina Kazachkina², Louise Maubant¹, Nathalie Cotte¹, Vladimir Kostoglodov², Adriano Gualandi^{3,} Kristel Chanard ⁴

1. ISTerre, University Grenoble Alpes, France

- 2. Instituto de Geofísica, UNAM, Mexico
- 3. JPL , Caltech USA
- 4. IGN, France

Institut des Sciences de la Terre

Tectonic context and Slow Slip Events

- Recurrent long-term SSEs in Guerrero (4 years) and Oaxaca (1-2 years) Graham et al. 2015, Radiguet et al. 2012, 2016
- Short term SSEs (LFEs + GPS; geodetic match filter) Frank et al. 2015; Rousset et al. 2017
- Tectonic tremors Husker et al. 2012; 2019

Questions and methodology

PROBLEM

 No consistent analysis of the various slow slip processes detected geodetically at the scale of the subduction

METHOD

Independent Component Analysis and slip inversion: ICAIM (Michel et al. 2018 JGR)

- Systematic analysis of GPS times series in the subduction over 18 years
- No a priori on slow slip characteristics (temporal evolution, duration, location...)

- Validate the approach and its detection efficiency
 - Characterize slow slip processes in the region at different scales
- Discuss their main features

Method: GNSS times series preparation

Increase in the number of station with time => Separate in 4 time period for the analysis

• vbICA algorithm with ICAIM software [Gualandi et al. 2016]

 $X_{M \times T} = U_{M \times R} S_{R \times R} V_{R \times T}^{t} + N_{M \times T}$

Spatial distribution

Temporal functions Noise

T number of time steps M number of time series R number of components selected

 Number of components selected as a compromise between fit to the data and model complexity (free energy parameter): 5 to 7 ICs in our case.

Method: slip inversion

Method: recombination of ICs

Method: SSEs detections

Results of the SSE detection

Slow slip occurrence along the subduction

Colors represent the average slip rate along depth, projected along a line parallel to the Trench (see black arrow on the map). Color scale is in mm/yr

Guerrero long-term SSEs Validation by comparing with previous studies

Guerrero long-term SSEs Validation by comparing with previous studies

From Radiguet et al. 2012; 2016

16

15.5

15

-103

-102

-101

-100

-99

Lon

-98

-97

5

-95

-96

Oaxaca SSEs

Validation by comparing with previous studies

Oaxaca SSEs

Validation by comparing with previous studies

Recent SSEs Both in Guerrero and Oaxaca

Slip distribution and moment rate for one event

Recent SSEs Both in Guerrero and Oaxaca

Ongoing events in 2019 (data end in April 2019)

 \Rightarrow Synchronization of Guerrero and Oaxaca slow slip after 2014.

Cumulative slow slip over 18 years

- The study confirms the existence of two major slow slip areas
- Low cumulated slow slip in the central zone

Postseismic (2012, 2018) (not removed from the SSE analysis)

Conclusions

- ICAIM (Independent Component Analysis Inversion Method) allows to detect and characterize the long-terms SSEs in Guerrero and Oaxaca ($M_w \approx 6.5 7.5$)
- Scaling of detected events consistent with M₀ ~ T³ as recently suggested by Michel et al. Nature 2019.
- ICA allows the isolate and correct from a seasonal signal

- The detected events confirm the segmentation in two main slow slip zones: Guerrero and Oaxaca, with larger events in Guerrero.
- Before 2014, the two regions appear to have independent cycles
- In the recent years, SSEs in the two regions are synchronized in time