

Towards high Precision XCO2 Retrievals from TanSat Observations

Dongxu Yang^{1,2,3,}, <u>Hartmut Boesch^{1,4}</u>, Yi Liu^{2,3}, Peter Somkuti⁵, and UoL GHG team and TanSat team

1 Earth Observation Science, School of Physics and Astronomy, University of Leicester, UK

2 Institute of Atmospheric Physics, Chinese Academy of Sciences, China

3 Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China

4 National Centre for Earth Observation, University of Leicester, UK

5. Colorado State University, Fort Collins, CO, USA

The TanSat Mission

Tan Sat

- National High Technology Research & Development Programs by Ministry of Science and Technology of China (MOST) (2011-2017)
- Strategic Priority Research Program from Chinese Academy of Sciences
 - Climate Change: Carbon Budget and Relevant Issue
 - > Space Science: Scientific Research Satellite
- NSMC (CMA) -- (2016- NOW) , Ground segment—
 Satellite data receive and process

TanSat mission kicked-off at 2011, launched at 2016

TanSat mission will join the ESA 3rd Party mission

Term-1 Measurement Goals XCO2 1~4 ppmv Monthly 500 x 500 km²

Term-2 Measurement Goals CO2 Flux Relative flux error 20% Monthly 500 x 500 km²

TanSat & Instrument

Name	Characters		
Orbit type	sun-synchronous		
Altitude	700 km		
Inclination	98°		
Local time	13:30		
Weight	500Kg		
O ₂ A: 758 – 778 nm Resolution: 0.04 nm SNR: 360 CO ₂ W: Resoluti SNR: 2	CO ₂ S: 2042 – 2082 nm Resolution: 0.17 nm SNR: 180 1594 – 1624 nm ion: 0.13 nm 250		

CO2

1200

1000

800

H2O, T ...

1400

1600

1800

Cloud and Aerosol Polarization Imager - CAPI

• A wide field multi-band imager with polarization channels

• UV: 0.38 $\mu m;$ VIS: 0.67 $\mu m;$ NIR: 0.87, 1.375 and

1.64µm

• Polarization: 0.67 & 1.64 μm

Atmospheric Carbon Dioxide Grating Spectrometer - ACGS

• Hyperspectral grating spectrometer with 3 bands

L2 Retrieval Algorithms

Here, a 2-band retrieval (NIR + 1.6 μm CO2 band) is used for IAPCAS and UoL-FP

Preliminary Result: Comparison of Retrieval Results from Original L1B Data

Retrieval comparison between

UoL-FP .VS. IAPCAS

- \triangleright Large spread of XCO2 retrieval results
- Poor consistency between different TanSat footprints (FP1-FP8) \geq
- Large differences between UoL-FP and IAPCAS retrievals \geq

EGU General Assembly 2020

Analysis of TanSat Solar Measurements

- A persistent frequency pattern is observed in O₂ A band when compared to UoL-FP solar model
- A Fourier series correction has been developed for radiometric correction
- > Method minimizes residual pattern when solar measurements are analyzed

Impact of L1B Correction Method on XCO2 **Retrievals**

New method for radiometric correction of TanSat L1b measurement leads \succ to much improved the fitting residual and consistency of the XCO2 retrieval

FP 1, RMSE: 0.027 -> 0.0076

TanSat overpass over Lamont

Mean O₂ A band fitting residuals

FP 2, RMSE: 0.025 -> 0.0068

0.77

0.77

FP 3, RMSE: 0.035 -> 0.0065

Impact of L1B Correction Method on XCO2 Retrievals

New method for radiometric correction of TanSat L1b measurement leads to much improved the fitting residual and consistency of the XCO2 retrieval

Filtering and Bias Correction

Application of Target Genetic algorithm for quality filtering of TanSat retrievals:

- Pre-selects transparency and complexity based on candidate filters selected according to correlation of error against TCCON
- Transparency of ~65% and 2 ppm RMSE can be achieved with 5 filters
- Empirical selection results in additional 13.5% loss of data

Bias correction based on multi-linear regression of same 5 parameters against TCCON

Yang et al. 2020 (submitted to JGR)

Validation of UoL-FP XCO₂ against TCCON

Good comparisons of UoL-FP TanSat retrieval against TCCON similar to other missions (OCO-2, GOSAT)

UNIVERSITY OF

Validation of UoL-FP XCO₂ against TCCON

Site		validation	
	N (overpasses)	bias (ppm)	RMSE (ppm)
Bialystok, Poland	2	0.78	0.93
Bremen, Germany	1	-0.29	0.29
Burgos, Philippines	2	0.27	1.10
Darwin, Australia	12	0.29	1.36
East Trout Lake, Canada	19	0.21	1.12
Edwards, USA	3	1.36	1.39
Garmisch, Germany	5	0.24	1.18
JPL, USA	20	-1.12	1.39
Karlsruhe, Germany.	6	0.33	1.67
Lamont, USA	17	0.37	0.76
Lauder, New Zealand	9	1.19	1.40
Orléans, France	2	1.40	1.83
Paris, France.	4	0.048	0.62
Park Falls, USA	15	0.41	1.20
Pasadena, USA	19	-1.41	1.84
Rikubetsu, Japan	4	-0.85	1.12
Sodankylä Finland	9	1.17 (0.35)*	2.83 (1.25) [*]
Saga, Japan	13	-0.92	1.53
Tsukuba, Japan	7	-1.04	1.62
Wollongong, Australia	5	0.90	1.23

Good comparisons of UoL-FP TanSat retrieval against TCCON similar to other missions (OCO-2, GOSAT)

UNIVERSITY OF

Inter-comparisons of TanSat UoL-FP and IAPCAS Retrieval

- Direct intercomparisons show good agreement between UoL and IAPCAS retrieval
- Note that no bias correction si applied here to both retrievals

EGU General Assembly 2020

Summary and Outlook

- We have applied the UoL-FP retrieval to TanSat XCO2 retrieval over TCCON sites
- By analyzing the solar calibration measurement, we found spectral artifacts can be effectively eliminated by applying a Fourier series model for radiometric correction
- This correction significantly improves fitting residual, and accordingly reduces XCO₂ retrieval RMSE against measurements from the TCCON
- After applying a bias correction and filtering, a mean RMSE of 1.47 ppm against TCCON is found with typical biases of a few tenths of a ppm for individual TCCON sites but larger biases (~1 ppm) are observed for some sites
- The methods developed in this study will be applied to IAPCAS XCO₂ retrieval which is used for the operational processing of TanSat L2 data. IAPCAS data will be available on the China GEO data service (<u>www.chinageoss.org/tansat</u>)
- UoL-FP TanSat data will be made available via ESA CCI+ website.

