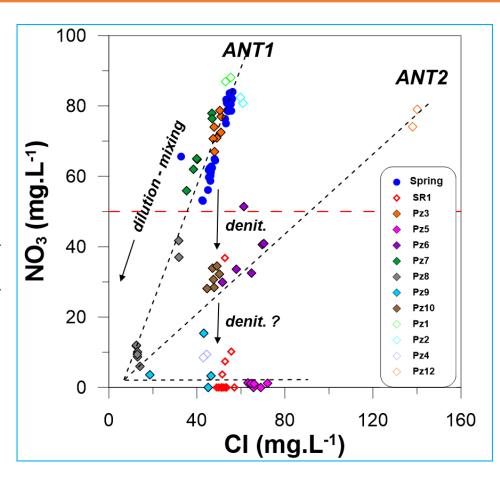

Nitrate transfer in the Critical Zone:

N & O isotopes of NO₃ and CFC-SF6 groundwater residence time assessment

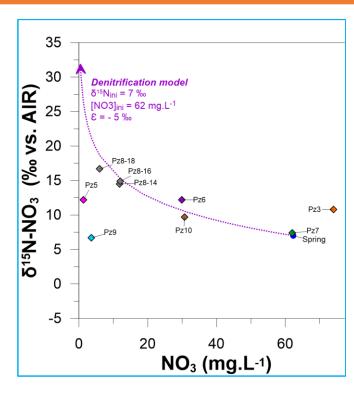
Emmanuelle Petelet-Giraud, Nicole Baran, Virginie Vergnaud, Flora Lucassou and Jean-Michel Schroetter



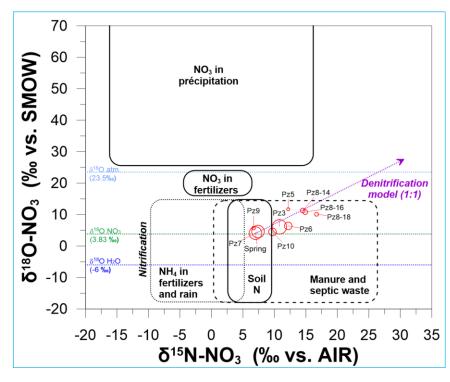
The Spring has $NO_3>50$ mg/L since the early 90's which decreases back to ~ 50 mg/L nowadays.

NO₃ vs. CI shows two anthropogenic components:

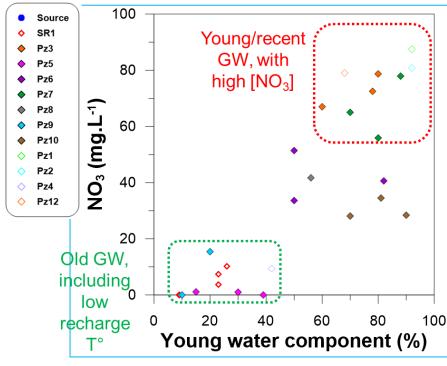
- ANT1: impacts most of the samples: agriculture impact
- ANT2: Pz12 could reflect an organic pollution enriched in Cl.
- **Between periods 1 & 2**, the **Spring**, **Pz7**, **Pz3** present [CI] & [NO₃] attenuations: land use changes.
- **Spatially**, other samples could undergo denitrification process (at least partial), CI remaining constant with a decreasing NO₃.



Nitrate transfer in the Critical Zone:


N & O isotopes of NO₃ and CFC-SF6 groundwater residence time assessment

Emmanuelle Petelet-Giraud, Nicole Baran, Virginie Vergnaud, Flora Lucassou and Jean-Michel Schroetter



A denitrification model from the **Source** & **Pz7** with ϵ =-5‰ explains a partial denitrification for **Pz6**, **Pz10** & **Pz8**.

Pz5 & Pz9 are not on this denitrification trend.

The initial $\delta^{18}O$ of mineral fertilizers is lost due to immobilization/mineralization in the soil resulting in a new $\delta^{18}O$ depending on the local water $\delta^{18}O$. The denitrification of **Pz6**, **Pz10**, **Pz8** is confirmed with a joint increase of $\delta^{15}N$ & $\delta^{18}O$ of NO_3 according to a 1:1 relation.

High [NO3] samples: low residence time. Pz5 & SR1 have low recharge T°, long residence time, explaining the very low to null [NO₃].

Pz9: long residence time but present-day recharge T°.